Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dignnld Structured version   Visualization version   GIF version

Theorem dignnld 42722
Description: The leading digits of a positive integer are 0. (Contributed by AV, 25-May-2020.)
Assertion
Ref Expression
dignnld ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → (𝐾(digit‘𝐵)𝑁) = 0)

Proof of Theorem dignnld
StepHypRef Expression
1 eluz2nn 11764 . . . 4 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℕ)
213ad2ant1 1102 . . 3 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → 𝐵 ∈ ℕ)
3 nnrp 11880 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
43anim2i 592 . . . . . . 7 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℝ+))
5 relogbzcl 24557 . . . . . . 7 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℝ+) → (𝐵 logb 𝑁) ∈ ℝ)
64, 5syl 17 . . . . . 6 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐵 logb 𝑁) ∈ ℝ)
7 nnre 11065 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
8 nnge1 11084 . . . . . . . . . 10 (𝑁 ∈ ℕ → 1 ≤ 𝑁)
97, 8jca 553 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 ∈ ℝ ∧ 1 ≤ 𝑁))
10 1re 10077 . . . . . . . . . 10 1 ∈ ℝ
11 elicopnf 12307 . . . . . . . . . 10 (1 ∈ ℝ → (𝑁 ∈ (1[,)+∞) ↔ (𝑁 ∈ ℝ ∧ 1 ≤ 𝑁)))
1210, 11ax-mp 5 . . . . . . . . 9 (𝑁 ∈ (1[,)+∞) ↔ (𝑁 ∈ ℝ ∧ 1 ≤ 𝑁))
139, 12sylibr 224 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ (1[,)+∞))
1413anim2i 592 . . . . . . 7 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ (1[,)+∞)))
15 rege1logbzge0 42678 . . . . . . 7 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ (1[,)+∞)) → 0 ≤ (𝐵 logb 𝑁))
1614, 15syl 17 . . . . . 6 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → 0 ≤ (𝐵 logb 𝑁))
176, 16jca 553 . . . . 5 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → ((𝐵 logb 𝑁) ∈ ℝ ∧ 0 ≤ (𝐵 logb 𝑁)))
18 flge0nn0 12661 . . . . 5 (((𝐵 logb 𝑁) ∈ ℝ ∧ 0 ≤ (𝐵 logb 𝑁)) → (⌊‘(𝐵 logb 𝑁)) ∈ ℕ0)
19 peano2nn0 11371 . . . . 5 ((⌊‘(𝐵 logb 𝑁)) ∈ ℕ0 → ((⌊‘(𝐵 logb 𝑁)) + 1) ∈ ℕ0)
2017, 18, 193syl 18 . . . 4 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → ((⌊‘(𝐵 logb 𝑁)) + 1) ∈ ℕ0)
21 eluznn0 11795 . . . 4 ((((⌊‘(𝐵 logb 𝑁)) + 1) ∈ ℕ0𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → 𝐾 ∈ ℕ0)
2220, 21stoic3 1741 . . 3 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → 𝐾 ∈ ℕ0)
23 nnnn0 11337 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
24 nn0rp0 12317 . . . . 5 (𝑁 ∈ ℕ0𝑁 ∈ (0[,)+∞))
2523, 24syl 17 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ (0[,)+∞))
26253ad2ant2 1103 . . 3 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → 𝑁 ∈ (0[,)+∞))
27 nn0digval 42719 . . 3 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0𝑁 ∈ (0[,)+∞)) → (𝐾(digit‘𝐵)𝑁) = ((⌊‘(𝑁 / (𝐵𝐾))) mod 𝐵))
282, 22, 26, 27syl3anc 1366 . 2 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → (𝐾(digit‘𝐵)𝑁) = ((⌊‘(𝑁 / (𝐵𝐾))) mod 𝐵))
2973ad2ant2 1103 . . . . . 6 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → 𝑁 ∈ ℝ)
30 eluzelre 11736 . . . . . . . 8 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℝ)
31303ad2ant1 1102 . . . . . . 7 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → 𝐵 ∈ ℝ)
32 eluz2n0 11766 . . . . . . . 8 (𝐵 ∈ (ℤ‘2) → 𝐵 ≠ 0)
33323ad2ant1 1102 . . . . . . 7 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → 𝐵 ≠ 0)
34 eluzelz 11735 . . . . . . . 8 (𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1)) → 𝐾 ∈ ℤ)
35343ad2ant3 1104 . . . . . . 7 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → 𝐾 ∈ ℤ)
3631, 33, 35reexpclzd 13074 . . . . . 6 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → (𝐵𝐾) ∈ ℝ)
37 eluzelcn 11737 . . . . . . . 8 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℂ)
38373ad2ant1 1102 . . . . . . 7 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → 𝐵 ∈ ℂ)
3938, 33, 35expne0d 13054 . . . . . 6 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → (𝐵𝐾) ≠ 0)
4029, 36, 39redivcld 10891 . . . . 5 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → (𝑁 / (𝐵𝐾)) ∈ ℝ)
41 nn0ge0 11356 . . . . . . . 8 (𝑁 ∈ ℕ0 → 0 ≤ 𝑁)
4223, 41syl 17 . . . . . . 7 (𝑁 ∈ ℕ → 0 ≤ 𝑁)
43423ad2ant2 1103 . . . . . 6 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → 0 ≤ 𝑁)
441nngt0d 11102 . . . . . . . . 9 (𝐵 ∈ (ℤ‘2) → 0 < 𝐵)
45443ad2ant1 1102 . . . . . . . 8 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → 0 < 𝐵)
46 expgt0 12933 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 𝐾 ∈ ℤ ∧ 0 < 𝐵) → 0 < (𝐵𝐾))
4731, 35, 45, 46syl3anc 1366 . . . . . . 7 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → 0 < (𝐵𝐾))
48 ge0div 10928 . . . . . . 7 ((𝑁 ∈ ℝ ∧ (𝐵𝐾) ∈ ℝ ∧ 0 < (𝐵𝐾)) → (0 ≤ 𝑁 ↔ 0 ≤ (𝑁 / (𝐵𝐾))))
4929, 36, 47, 48syl3anc 1366 . . . . . 6 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → (0 ≤ 𝑁 ↔ 0 ≤ (𝑁 / (𝐵𝐾))))
5043, 49mpbid 222 . . . . 5 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → 0 ≤ (𝑁 / (𝐵𝐾)))
51 dignn0ldlem 42721 . . . . . 6 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → 𝑁 < (𝐵𝐾))
521nnrpd 11908 . . . . . . . . 9 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℝ+)
53 rpexpcl 12919 . . . . . . . . 9 ((𝐵 ∈ ℝ+𝐾 ∈ ℤ) → (𝐵𝐾) ∈ ℝ+)
5452, 34, 53syl2an 493 . . . . . . . 8 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → (𝐵𝐾) ∈ ℝ+)
55543adant2 1100 . . . . . . 7 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → (𝐵𝐾) ∈ ℝ+)
56 divlt1lt 11937 . . . . . . 7 ((𝑁 ∈ ℝ ∧ (𝐵𝐾) ∈ ℝ+) → ((𝑁 / (𝐵𝐾)) < 1 ↔ 𝑁 < (𝐵𝐾)))
5729, 55, 56syl2anc 694 . . . . . 6 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → ((𝑁 / (𝐵𝐾)) < 1 ↔ 𝑁 < (𝐵𝐾)))
5851, 57mpbird 247 . . . . 5 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → (𝑁 / (𝐵𝐾)) < 1)
59 0re 10078 . . . . . . 7 0 ∈ ℝ
6010rexri 10135 . . . . . . 7 1 ∈ ℝ*
6159, 60pm3.2i 470 . . . . . 6 (0 ∈ ℝ ∧ 1 ∈ ℝ*)
62 elico2 12275 . . . . . 6 ((0 ∈ ℝ ∧ 1 ∈ ℝ*) → ((𝑁 / (𝐵𝐾)) ∈ (0[,)1) ↔ ((𝑁 / (𝐵𝐾)) ∈ ℝ ∧ 0 ≤ (𝑁 / (𝐵𝐾)) ∧ (𝑁 / (𝐵𝐾)) < 1)))
6361, 62mp1i 13 . . . . 5 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → ((𝑁 / (𝐵𝐾)) ∈ (0[,)1) ↔ ((𝑁 / (𝐵𝐾)) ∈ ℝ ∧ 0 ≤ (𝑁 / (𝐵𝐾)) ∧ (𝑁 / (𝐵𝐾)) < 1)))
6440, 50, 58, 63mpbir3and 1264 . . . 4 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → (𝑁 / (𝐵𝐾)) ∈ (0[,)1))
65 ico01fl0 12660 . . . 4 ((𝑁 / (𝐵𝐾)) ∈ (0[,)1) → (⌊‘(𝑁 / (𝐵𝐾))) = 0)
6664, 65syl 17 . . 3 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → (⌊‘(𝑁 / (𝐵𝐾))) = 0)
6766oveq1d 6705 . 2 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → ((⌊‘(𝑁 / (𝐵𝐾))) mod 𝐵) = (0 mod 𝐵))
68523ad2ant1 1102 . . 3 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → 𝐵 ∈ ℝ+)
69 0mod 12741 . . 3 (𝐵 ∈ ℝ+ → (0 mod 𝐵) = 0)
7068, 69syl 17 . 2 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → (0 mod 𝐵) = 0)
7128, 67, 703eqtrd 2689 1 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → (𝐾(digit‘𝐵)𝑁) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  wne 2823   class class class wbr 4685  cfv 5926  (class class class)co 6690  cc 9972  cr 9973  0cc0 9974  1c1 9975   + caddc 9977  +∞cpnf 10109  *cxr 10111   < clt 10112  cle 10113   / cdiv 10722  cn 11058  2c2 11108  0cn0 11330  cz 11415  cuz 11725  +crp 11870  [,)cico 12215  cfl 12631   mod cmo 12708  cexp 12900   logb clogb 24547  digitcdig 42714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053  ax-mulf 10054
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-fi 8358  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-ioo 12217  df-ioc 12218  df-ico 12219  df-icc 12220  df-fz 12365  df-fzo 12505  df-fl 12633  df-mod 12709  df-seq 12842  df-exp 12901  df-fac 13101  df-bc 13130  df-hash 13158  df-shft 13851  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-limsup 14246  df-clim 14263  df-rlim 14264  df-sum 14461  df-ef 14842  df-sin 14844  df-cos 14845  df-pi 14847  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-starv 16003  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-hom 16013  df-cco 16014  df-rest 16130  df-topn 16131  df-0g 16149  df-gsum 16150  df-topgen 16151  df-pt 16152  df-prds 16155  df-xrs 16209  df-qtop 16214  df-imas 16215  df-xps 16217  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-submnd 17383  df-mulg 17588  df-cntz 17796  df-cmn 18241  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-fbas 19791  df-fg 19792  df-cnfld 19795  df-top 20747  df-topon 20764  df-topsp 20785  df-bases 20798  df-cld 20871  df-ntr 20872  df-cls 20873  df-nei 20950  df-lp 20988  df-perf 20989  df-cn 21079  df-cnp 21080  df-haus 21167  df-tx 21413  df-hmeo 21606  df-fil 21697  df-fm 21789  df-flim 21790  df-flf 21791  df-xms 22172  df-ms 22173  df-tms 22174  df-cncf 22728  df-limc 23675  df-dv 23676  df-log 24348  df-cxp 24349  df-logb 24548  df-dig 42715
This theorem is referenced by:  dig2nn0ld  42723
  Copyright terms: Public domain W3C validator