Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dih1dimatlem Structured version   Visualization version   GIF version

Theorem dih1dimatlem 36935
 Description: Lemma for dih1dimat 36936. (Contributed by NM, 10-Apr-2014.)
Hypotheses
Ref Expression
dih1dimat.h 𝐻 = (LHyp‘𝐾)
dih1dimat.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dih1dimat.i 𝐼 = ((DIsoH‘𝐾)‘𝑊)
dih1dimat.a 𝐴 = (LSAtoms‘𝑈)
dih1dimat.b 𝐵 = (Base‘𝐾)
dih1dimat.l = (le‘𝐾)
dih1dimat.c 𝐶 = (Atoms‘𝐾)
dih1dimat.p 𝑃 = ((oc‘𝐾)‘𝑊)
dih1dimat.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dih1dimat.r 𝑅 = ((trL‘𝐾)‘𝑊)
dih1dimat.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dih1dimat.o 𝑂 = (𝑇 ↦ ( I ↾ 𝐵))
dih1dimat.d 𝐹 = (Scalar‘𝑈)
dih1dimat.j 𝐽 = (invr𝐹)
dih1dimat.v 𝑉 = (Base‘𝑈)
dih1dimat.m · = ( ·𝑠𝑈)
dih1dimat.s 𝑆 = (LSubSp‘𝑈)
dih1dimat.n 𝑁 = (LSpan‘𝑈)
dih1dimat.z 0 = (0g𝑈)
dih1dimat.g 𝐺 = (𝑇 (𝑃) = (((𝐽𝑠)‘𝑓)‘𝑃))
Assertion
Ref Expression
dih1dimatlem (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐷𝐴) → 𝐷 ∈ ran 𝐼)
Distinct variable groups:   ,   𝐵,   𝑓,𝑠,𝐸   𝐶,   ,𝐽   𝑓,𝑁,𝑠   𝑓,,𝐾,𝑠   𝑇,𝑓,,𝑠   𝑈,𝑓,,𝑠   𝑓,𝐻,,𝑠   𝑓,𝑉,𝑠   𝑓,𝑊,,𝑠   𝑓,𝐼,𝑠   𝑃,
Allowed substitution hints:   𝐴(𝑓,,𝑠)   𝐵(𝑓,𝑠)   𝐶(𝑓,𝑠)   𝐷(𝑓,,𝑠)   𝑃(𝑓,𝑠)   𝑅(𝑓,,𝑠)   𝑆(𝑓,,𝑠)   · (𝑓,,𝑠)   𝐸()   𝐹(𝑓,,𝑠)   𝐺(𝑓,,𝑠)   𝐼()   𝐽(𝑓,𝑠)   (𝑓,𝑠)   𝑁()   𝑂(𝑓,,𝑠)   𝑉()   0 (𝑓,,𝑠)

Proof of Theorem dih1dimatlem
Dummy variables 𝑣 𝑔 𝑖 𝑝 𝑟 𝑡 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dih1dimat.h . . . . 5 𝐻 = (LHyp‘𝐾)
2 dih1dimat.u . . . . 5 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 id 22 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐾 ∈ HL ∧ 𝑊𝐻))
41, 2, 3dvhlvec 36715 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑈 ∈ LVec)
5 dih1dimat.v . . . . 5 𝑉 = (Base‘𝑈)
6 dih1dimat.n . . . . 5 𝑁 = (LSpan‘𝑈)
7 dih1dimat.z . . . . 5 0 = (0g𝑈)
8 dih1dimat.a . . . . 5 𝐴 = (LSAtoms‘𝑈)
95, 6, 7, 8islsat 34596 . . . 4 (𝑈 ∈ LVec → (𝐷𝐴 ↔ ∃𝑣 ∈ (𝑉 ∖ { 0 })𝐷 = (𝑁‘{𝑣})))
104, 9syl 17 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐷𝐴 ↔ ∃𝑣 ∈ (𝑉 ∖ { 0 })𝐷 = (𝑁‘{𝑣})))
1110biimpa 500 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐷𝐴) → ∃𝑣 ∈ (𝑉 ∖ { 0 })𝐷 = (𝑁‘{𝑣}))
12 eldifi 3765 . . . . . . . 8 (𝑣 ∈ (𝑉 ∖ { 0 }) → 𝑣𝑉)
13 dih1dimat.t . . . . . . . . . 10 𝑇 = ((LTrn‘𝐾)‘𝑊)
14 dih1dimat.e . . . . . . . . . 10 𝐸 = ((TEndo‘𝐾)‘𝑊)
151, 13, 14, 2, 5dvhvbase 36693 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑉 = (𝑇 × 𝐸))
1615eleq2d 2716 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑣𝑉𝑣 ∈ (𝑇 × 𝐸)))
1712, 16syl5ib 234 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑣 ∈ (𝑉 ∖ { 0 }) → 𝑣 ∈ (𝑇 × 𝐸)))
1817imp 444 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑣 ∈ (𝑉 ∖ { 0 })) → 𝑣 ∈ (𝑇 × 𝐸))
19 simpr 476 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠 = 𝑂) → 𝑠 = 𝑂)
2019opeq2d 4440 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠 = 𝑂) → ⟨𝑓, 𝑠⟩ = ⟨𝑓, 𝑂⟩)
2120sneqd 4222 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠 = 𝑂) → {⟨𝑓, 𝑠⟩} = {⟨𝑓, 𝑂⟩})
2221fveq2d 6233 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠 = 𝑂) → (𝑁‘{⟨𝑓, 𝑠⟩}) = (𝑁‘{⟨𝑓, 𝑂⟩}))
23 simpl 472 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇) → (𝐾 ∈ HL ∧ 𝑊𝐻))
24 dih1dimat.b . . . . . . . . . . . . . . . . 17 𝐵 = (Base‘𝐾)
25 dih1dimat.r . . . . . . . . . . . . . . . . 17 𝑅 = ((trL‘𝐾)‘𝑊)
2624, 1, 13, 25trlcl 35769 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇) → (𝑅𝑓) ∈ 𝐵)
27 dih1dimat.l . . . . . . . . . . . . . . . . 17 = (le‘𝐾)
2827, 1, 13, 25trlle 35789 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇) → (𝑅𝑓) 𝑊)
29 dih1dimat.i . . . . . . . . . . . . . . . . 17 𝐼 = ((DIsoH‘𝐾)‘𝑊)
30 eqid 2651 . . . . . . . . . . . . . . . . 17 ((DIsoB‘𝐾)‘𝑊) = ((DIsoB‘𝐾)‘𝑊)
3124, 27, 1, 29, 30dihvalb 36843 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑅𝑓) ∈ 𝐵 ∧ (𝑅𝑓) 𝑊)) → (𝐼‘(𝑅𝑓)) = (((DIsoB‘𝐾)‘𝑊)‘(𝑅𝑓)))
3223, 26, 28, 31syl12anc 1364 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇) → (𝐼‘(𝑅𝑓)) = (((DIsoB‘𝐾)‘𝑊)‘(𝑅𝑓)))
33 dih1dimat.o . . . . . . . . . . . . . . . 16 𝑂 = (𝑇 ↦ ( I ↾ 𝐵))
3424, 1, 13, 25, 33, 2, 30, 6dib1dim2 36774 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇) → (((DIsoB‘𝐾)‘𝑊)‘(𝑅𝑓)) = (𝑁‘{⟨𝑓, 𝑂⟩}))
3532, 34eqtr2d 2686 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇) → (𝑁‘{⟨𝑓, 𝑂⟩}) = (𝐼‘(𝑅𝑓)))
36 dih1dimat.s . . . . . . . . . . . . . . . . . 18 𝑆 = (LSubSp‘𝑈)
3724, 1, 29, 2, 36dihf11 36873 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐼:𝐵1-1𝑆)
3837adantr 480 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇) → 𝐼:𝐵1-1𝑆)
39 f1fn 6140 . . . . . . . . . . . . . . . 16 (𝐼:𝐵1-1𝑆𝐼 Fn 𝐵)
4038, 39syl 17 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇) → 𝐼 Fn 𝐵)
41 fnfvelrn 6396 . . . . . . . . . . . . . . 15 ((𝐼 Fn 𝐵 ∧ (𝑅𝑓) ∈ 𝐵) → (𝐼‘(𝑅𝑓)) ∈ ran 𝐼)
4240, 26, 41syl2anc 694 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇) → (𝐼‘(𝑅𝑓)) ∈ ran 𝐼)
4335, 42eqeltrd 2730 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇) → (𝑁‘{⟨𝑓, 𝑂⟩}) ∈ ran 𝐼)
4443adantrr 753 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) → (𝑁‘{⟨𝑓, 𝑂⟩}) ∈ ran 𝐼)
4544adantr 480 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠 = 𝑂) → (𝑁‘{⟨𝑓, 𝑂⟩}) ∈ ran 𝐼)
4622, 45eqeltrd 2730 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠 = 𝑂) → (𝑁‘{⟨𝑓, 𝑠⟩}) ∈ ran 𝐼)
47 simpll 805 . . . . . . . . . . . . . . . . . 18 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → (𝐾 ∈ HL ∧ 𝑊𝐻))
48 dih1dimat.d . . . . . . . . . . . . . . . . . . 19 𝐹 = (Scalar‘𝑈)
49 eqid 2651 . . . . . . . . . . . . . . . . . . 19 (Base‘𝐹) = (Base‘𝐹)
501, 14, 2, 48, 49dvhbase 36689 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (Base‘𝐹) = 𝐸)
5147, 50syl 17 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → (Base‘𝐹) = 𝐸)
5251rexeqdv 3175 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → (∃𝑡 ∈ (Base‘𝐹)𝑢 = (𝑡 ·𝑓, 𝑠⟩) ↔ ∃𝑡𝐸 𝑢 = (𝑡 ·𝑓, 𝑠⟩)))
53 simplll 813 . . . . . . . . . . . . . . . . . . . 20 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) ∧ 𝑡𝐸) → (𝐾 ∈ HL ∧ 𝑊𝐻))
54 simpr 476 . . . . . . . . . . . . . . . . . . . 20 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) ∧ 𝑡𝐸) → 𝑡𝐸)
55 opelxpi 5182 . . . . . . . . . . . . . . . . . . . . 21 ((𝑓𝑇𝑠𝐸) → ⟨𝑓, 𝑠⟩ ∈ (𝑇 × 𝐸))
5655ad3antlr 767 . . . . . . . . . . . . . . . . . . . 20 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) ∧ 𝑡𝐸) → ⟨𝑓, 𝑠⟩ ∈ (𝑇 × 𝐸))
57 dih1dimat.m . . . . . . . . . . . . . . . . . . . . 21 · = ( ·𝑠𝑈)
581, 13, 14, 2, 57dvhvscacl 36709 . . . . . . . . . . . . . . . . . . . 20 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑡𝐸 ∧ ⟨𝑓, 𝑠⟩ ∈ (𝑇 × 𝐸))) → (𝑡 ·𝑓, 𝑠⟩) ∈ (𝑇 × 𝐸))
5953, 54, 56, 58syl12anc 1364 . . . . . . . . . . . . . . . . . . 19 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) ∧ 𝑡𝐸) → (𝑡 ·𝑓, 𝑠⟩) ∈ (𝑇 × 𝐸))
60 eleq1a 2725 . . . . . . . . . . . . . . . . . . 19 ((𝑡 ·𝑓, 𝑠⟩) ∈ (𝑇 × 𝐸) → (𝑢 = (𝑡 ·𝑓, 𝑠⟩) → 𝑢 ∈ (𝑇 × 𝐸)))
6159, 60syl 17 . . . . . . . . . . . . . . . . . 18 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) ∧ 𝑡𝐸) → (𝑢 = (𝑡 ·𝑓, 𝑠⟩) → 𝑢 ∈ (𝑇 × 𝐸)))
6261rexlimdva 3060 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → (∃𝑡𝐸 𝑢 = (𝑡 ·𝑓, 𝑠⟩) → 𝑢 ∈ (𝑇 × 𝐸)))
6362pm4.71rd 668 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → (∃𝑡𝐸 𝑢 = (𝑡 ·𝑓, 𝑠⟩) ↔ (𝑢 ∈ (𝑇 × 𝐸) ∧ ∃𝑡𝐸 𝑢 = (𝑡 ·𝑓, 𝑠⟩))))
64 simplrl 817 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → 𝑓𝑇)
6564adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) ∧ 𝑡𝐸) → 𝑓𝑇)
66 simplrr 818 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → 𝑠𝐸)
6766adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) ∧ 𝑡𝐸) → 𝑠𝐸)
681, 13, 14, 2, 57dvhopvsca 36708 . . . . . . . . . . . . . . . . . . . 20 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑡𝐸𝑓𝑇𝑠𝐸)) → (𝑡 ·𝑓, 𝑠⟩) = ⟨(𝑡𝑓), (𝑡𝑠)⟩)
6953, 54, 65, 67, 68syl13anc 1368 . . . . . . . . . . . . . . . . . . 19 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) ∧ 𝑡𝐸) → (𝑡 ·𝑓, 𝑠⟩) = ⟨(𝑡𝑓), (𝑡𝑠)⟩)
7069eqeq2d 2661 . . . . . . . . . . . . . . . . . 18 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) ∧ 𝑡𝐸) → (𝑢 = (𝑡 ·𝑓, 𝑠⟩) ↔ 𝑢 = ⟨(𝑡𝑓), (𝑡𝑠)⟩))
7170rexbidva 3078 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → (∃𝑡𝐸 𝑢 = (𝑡 ·𝑓, 𝑠⟩) ↔ ∃𝑡𝐸 𝑢 = ⟨(𝑡𝑓), (𝑡𝑠)⟩))
7271anbi2d 740 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → ((𝑢 ∈ (𝑇 × 𝐸) ∧ ∃𝑡𝐸 𝑢 = (𝑡 ·𝑓, 𝑠⟩)) ↔ (𝑢 ∈ (𝑇 × 𝐸) ∧ ∃𝑡𝐸 𝑢 = ⟨(𝑡𝑓), (𝑡𝑠)⟩)))
7352, 63, 723bitrd 294 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → (∃𝑡 ∈ (Base‘𝐹)𝑢 = (𝑡 ·𝑓, 𝑠⟩) ↔ (𝑢 ∈ (𝑇 × 𝐸) ∧ ∃𝑡𝐸 𝑢 = ⟨(𝑡𝑓), (𝑡𝑠)⟩)))
7473abbidv 2770 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → {𝑢 ∣ ∃𝑡 ∈ (Base‘𝐹)𝑢 = (𝑡 ·𝑓, 𝑠⟩)} = {𝑢 ∣ (𝑢 ∈ (𝑇 × 𝐸) ∧ ∃𝑡𝐸 𝑢 = ⟨(𝑡𝑓), (𝑡𝑠)⟩)})
75 df-rab 2950 . . . . . . . . . . . . . 14 {𝑢 ∈ (𝑇 × 𝐸) ∣ ∃𝑡𝐸 𝑢 = ⟨(𝑡𝑓), (𝑡𝑠)⟩} = {𝑢 ∣ (𝑢 ∈ (𝑇 × 𝐸) ∧ ∃𝑡𝐸 𝑢 = ⟨(𝑡𝑓), (𝑡𝑠)⟩)}
7674, 75syl6eqr 2703 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → {𝑢 ∣ ∃𝑡 ∈ (Base‘𝐹)𝑢 = (𝑡 ·𝑓, 𝑠⟩)} = {𝑢 ∈ (𝑇 × 𝐸) ∣ ∃𝑡𝐸 𝑢 = ⟨(𝑡𝑓), (𝑡𝑠)⟩})
77 ssrab2 3720 . . . . . . . . . . . . . . 15 {𝑢 ∈ (𝑇 × 𝐸) ∣ ∃𝑡𝐸 𝑢 = ⟨(𝑡𝑓), (𝑡𝑠)⟩} ⊆ (𝑇 × 𝐸)
78 relxp 5160 . . . . . . . . . . . . . . 15 Rel (𝑇 × 𝐸)
79 relss 5240 . . . . . . . . . . . . . . 15 ({𝑢 ∈ (𝑇 × 𝐸) ∣ ∃𝑡𝐸 𝑢 = ⟨(𝑡𝑓), (𝑡𝑠)⟩} ⊆ (𝑇 × 𝐸) → (Rel (𝑇 × 𝐸) → Rel {𝑢 ∈ (𝑇 × 𝐸) ∣ ∃𝑡𝐸 𝑢 = ⟨(𝑡𝑓), (𝑡𝑠)⟩}))
8077, 78, 79mp2 9 . . . . . . . . . . . . . 14 Rel {𝑢 ∈ (𝑇 × 𝐸) ∣ ∃𝑡𝐸 𝑢 = ⟨(𝑡𝑓), (𝑡𝑠)⟩}
81 relopab 5280 . . . . . . . . . . . . . 14 Rel {⟨𝑔, 𝑟⟩ ∣ (𝑔 = (𝑟𝐺) ∧ 𝑟𝐸)}
82 vex 3234 . . . . . . . . . . . . . . . 16 𝑖 ∈ V
83 vex 3234 . . . . . . . . . . . . . . . 16 𝑝 ∈ V
84 eqeq1 2655 . . . . . . . . . . . . . . . . 17 (𝑔 = 𝑖 → (𝑔 = (𝑟𝐺) ↔ 𝑖 = (𝑟𝐺)))
8584anbi1d 741 . . . . . . . . . . . . . . . 16 (𝑔 = 𝑖 → ((𝑔 = (𝑟𝐺) ∧ 𝑟𝐸) ↔ (𝑖 = (𝑟𝐺) ∧ 𝑟𝐸)))
86 fveq1 6228 . . . . . . . . . . . . . . . . . 18 (𝑟 = 𝑝 → (𝑟𝐺) = (𝑝𝐺))
8786eqeq2d 2661 . . . . . . . . . . . . . . . . 17 (𝑟 = 𝑝 → (𝑖 = (𝑟𝐺) ↔ 𝑖 = (𝑝𝐺)))
88 eleq1 2718 . . . . . . . . . . . . . . . . 17 (𝑟 = 𝑝 → (𝑟𝐸𝑝𝐸))
8987, 88anbi12d 747 . . . . . . . . . . . . . . . 16 (𝑟 = 𝑝 → ((𝑖 = (𝑟𝐺) ∧ 𝑟𝐸) ↔ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)))
9082, 83, 85, 89opelopab 5026 . . . . . . . . . . . . . . 15 (⟨𝑖, 𝑝⟩ ∈ {⟨𝑔, 𝑟⟩ ∣ (𝑔 = (𝑟𝐺) ∧ 𝑟𝐸)} ↔ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸))
91 dih1dimat.c . . . . . . . . . . . . . . . . . . 19 𝐶 = (Atoms‘𝐾)
92 dih1dimat.p . . . . . . . . . . . . . . . . . . 19 𝑃 = ((oc‘𝐾)‘𝑊)
93 dih1dimat.j . . . . . . . . . . . . . . . . . . 19 𝐽 = (invr𝐹)
94 dih1dimat.g . . . . . . . . . . . . . . . . . . 19 𝐺 = (𝑇 (𝑃) = (((𝐽𝑠)‘𝑓)‘𝑃))
951, 2, 29, 8, 24, 27, 91, 92, 13, 25, 14, 33, 48, 93, 5, 57, 36, 6, 7, 94dih1dimatlem0 36934 . . . . . . . . . . . . . . . . . 18 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) → ((𝑖 = (𝑝𝐺) ∧ 𝑝𝐸) ↔ ((𝑖𝑇𝑝𝐸) ∧ ∃𝑡𝐸 (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠)))))
96953expa 1284 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → ((𝑖 = (𝑝𝐺) ∧ 𝑝𝐸) ↔ ((𝑖𝑇𝑝𝐸) ∧ ∃𝑡𝐸 (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠)))))
97 opelxp 5180 . . . . . . . . . . . . . . . . . 18 (⟨𝑖, 𝑝⟩ ∈ (𝑇 × 𝐸) ↔ (𝑖𝑇𝑝𝐸))
9882, 83opth 4974 . . . . . . . . . . . . . . . . . . 19 (⟨𝑖, 𝑝⟩ = ⟨(𝑡𝑓), (𝑡𝑠)⟩ ↔ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠)))
9998rexbii 3070 . . . . . . . . . . . . . . . . . 18 (∃𝑡𝐸𝑖, 𝑝⟩ = ⟨(𝑡𝑓), (𝑡𝑠)⟩ ↔ ∃𝑡𝐸 (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠)))
10097, 99anbi12i 733 . . . . . . . . . . . . . . . . 17 ((⟨𝑖, 𝑝⟩ ∈ (𝑇 × 𝐸) ∧ ∃𝑡𝐸𝑖, 𝑝⟩ = ⟨(𝑡𝑓), (𝑡𝑠)⟩) ↔ ((𝑖𝑇𝑝𝐸) ∧ ∃𝑡𝐸 (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))))
10196, 100syl6bbr 278 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → ((𝑖 = (𝑝𝐺) ∧ 𝑝𝐸) ↔ (⟨𝑖, 𝑝⟩ ∈ (𝑇 × 𝐸) ∧ ∃𝑡𝐸𝑖, 𝑝⟩ = ⟨(𝑡𝑓), (𝑡𝑠)⟩)))
102 eqeq1 2655 . . . . . . . . . . . . . . . . . 18 (𝑢 = ⟨𝑖, 𝑝⟩ → (𝑢 = ⟨(𝑡𝑓), (𝑡𝑠)⟩ ↔ ⟨𝑖, 𝑝⟩ = ⟨(𝑡𝑓), (𝑡𝑠)⟩))
103102rexbidv 3081 . . . . . . . . . . . . . . . . 17 (𝑢 = ⟨𝑖, 𝑝⟩ → (∃𝑡𝐸 𝑢 = ⟨(𝑡𝑓), (𝑡𝑠)⟩ ↔ ∃𝑡𝐸𝑖, 𝑝⟩ = ⟨(𝑡𝑓), (𝑡𝑠)⟩))
104103elrab 3396 . . . . . . . . . . . . . . . 16 (⟨𝑖, 𝑝⟩ ∈ {𝑢 ∈ (𝑇 × 𝐸) ∣ ∃𝑡𝐸 𝑢 = ⟨(𝑡𝑓), (𝑡𝑠)⟩} ↔ (⟨𝑖, 𝑝⟩ ∈ (𝑇 × 𝐸) ∧ ∃𝑡𝐸𝑖, 𝑝⟩ = ⟨(𝑡𝑓), (𝑡𝑠)⟩))
105101, 104syl6bbr 278 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → ((𝑖 = (𝑝𝐺) ∧ 𝑝𝐸) ↔ ⟨𝑖, 𝑝⟩ ∈ {𝑢 ∈ (𝑇 × 𝐸) ∣ ∃𝑡𝐸 𝑢 = ⟨(𝑡𝑓), (𝑡𝑠)⟩}))
10690, 105syl5rbb 273 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → (⟨𝑖, 𝑝⟩ ∈ {𝑢 ∈ (𝑇 × 𝐸) ∣ ∃𝑡𝐸 𝑢 = ⟨(𝑡𝑓), (𝑡𝑠)⟩} ↔ ⟨𝑖, 𝑝⟩ ∈ {⟨𝑔, 𝑟⟩ ∣ (𝑔 = (𝑟𝐺) ∧ 𝑟𝐸)}))
10780, 81, 106eqrelrdv 5250 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → {𝑢 ∈ (𝑇 × 𝐸) ∣ ∃𝑡𝐸 𝑢 = ⟨(𝑡𝑓), (𝑡𝑠)⟩} = {⟨𝑔, 𝑟⟩ ∣ (𝑔 = (𝑟𝐺) ∧ 𝑟𝐸)})
10876, 107eqtrd 2685 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → {𝑢 ∣ ∃𝑡 ∈ (Base‘𝐹)𝑢 = (𝑡 ·𝑓, 𝑠⟩)} = {⟨𝑔, 𝑟⟩ ∣ (𝑔 = (𝑟𝐺) ∧ 𝑟𝐸)})
1091, 2, 47dvhlmod 36716 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → 𝑈 ∈ LMod)
1101, 13, 14, 2, 5dvhelvbasei 36694 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) → ⟨𝑓, 𝑠⟩ ∈ 𝑉)
111110adantr 480 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → ⟨𝑓, 𝑠⟩ ∈ 𝑉)
11248, 49, 5, 57, 6lspsn 19050 . . . . . . . . . . . . 13 ((𝑈 ∈ LMod ∧ ⟨𝑓, 𝑠⟩ ∈ 𝑉) → (𝑁‘{⟨𝑓, 𝑠⟩}) = {𝑢 ∣ ∃𝑡 ∈ (Base‘𝐹)𝑢 = (𝑡 ·𝑓, 𝑠⟩)})
113109, 111, 112syl2anc 694 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → (𝑁‘{⟨𝑓, 𝑠⟩}) = {𝑢 ∣ ∃𝑡 ∈ (Base‘𝐹)𝑢 = (𝑡 ·𝑓, 𝑠⟩)})
114 simpr 476 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → 𝑠𝑂)
11524, 1, 13, 14, 33, 2, 48, 93tendoinvcl 36710 . . . . . . . . . . . . . . . . . 18 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑠𝑂) → ((𝐽𝑠) ∈ 𝐸 ∧ (𝐽𝑠) ≠ 𝑂))
116115simpld 474 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑠𝑂) → (𝐽𝑠) ∈ 𝐸)
11747, 66, 114, 116syl3anc 1366 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → (𝐽𝑠) ∈ 𝐸)
1181, 13, 14tendocl 36372 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐽𝑠) ∈ 𝐸𝑓𝑇) → ((𝐽𝑠)‘𝑓) ∈ 𝑇)
11947, 117, 64, 118syl3anc 1366 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → ((𝐽𝑠)‘𝑓) ∈ 𝑇)
12027, 91, 1, 92lhpocnel2 35623 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑃𝐶 ∧ ¬ 𝑃 𝑊))
12147, 120syl 17 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → (𝑃𝐶 ∧ ¬ 𝑃 𝑊))
12227, 91, 1, 13ltrnel 35743 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐽𝑠)‘𝑓) ∈ 𝑇 ∧ (𝑃𝐶 ∧ ¬ 𝑃 𝑊)) → ((((𝐽𝑠)‘𝑓)‘𝑃) ∈ 𝐶 ∧ ¬ (((𝐽𝑠)‘𝑓)‘𝑃) 𝑊))
12347, 119, 121, 122syl3anc 1366 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → ((((𝐽𝑠)‘𝑓)‘𝑃) ∈ 𝐶 ∧ ¬ (((𝐽𝑠)‘𝑓)‘𝑃) 𝑊))
124 eqid 2651 . . . . . . . . . . . . . . 15 ((DIsoC‘𝐾)‘𝑊) = ((DIsoC‘𝐾)‘𝑊)
12527, 91, 1, 124, 29dihvalcqat 36845 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((((𝐽𝑠)‘𝑓)‘𝑃) ∈ 𝐶 ∧ ¬ (((𝐽𝑠)‘𝑓)‘𝑃) 𝑊)) → (𝐼‘(((𝐽𝑠)‘𝑓)‘𝑃)) = (((DIsoC‘𝐾)‘𝑊)‘(((𝐽𝑠)‘𝑓)‘𝑃)))
12647, 123, 125syl2anc 694 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → (𝐼‘(((𝐽𝑠)‘𝑓)‘𝑃)) = (((DIsoC‘𝐾)‘𝑊)‘(((𝐽𝑠)‘𝑓)‘𝑃)))
12727, 91, 1, 92, 13, 14, 124, 94dicval2 36785 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((((𝐽𝑠)‘𝑓)‘𝑃) ∈ 𝐶 ∧ ¬ (((𝐽𝑠)‘𝑓)‘𝑃) 𝑊)) → (((DIsoC‘𝐾)‘𝑊)‘(((𝐽𝑠)‘𝑓)‘𝑃)) = {⟨𝑔, 𝑟⟩ ∣ (𝑔 = (𝑟𝐺) ∧ 𝑟𝐸)})
12847, 123, 127syl2anc 694 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → (((DIsoC‘𝐾)‘𝑊)‘(((𝐽𝑠)‘𝑓)‘𝑃)) = {⟨𝑔, 𝑟⟩ ∣ (𝑔 = (𝑟𝐺) ∧ 𝑟𝐸)})
129126, 128eqtrd 2685 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → (𝐼‘(((𝐽𝑠)‘𝑓)‘𝑃)) = {⟨𝑔, 𝑟⟩ ∣ (𝑔 = (𝑟𝐺) ∧ 𝑟𝐸)})
130108, 113, 1293eqtr4d 2695 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → (𝑁‘{⟨𝑓, 𝑠⟩}) = (𝐼‘(((𝐽𝑠)‘𝑓)‘𝑃)))
13124, 1, 29dihfn 36874 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐼 Fn 𝐵)
132131adantr 480 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) → 𝐼 Fn 𝐵)
133132adantr 480 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → 𝐼 Fn 𝐵)
134 simplll 813 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → 𝐾 ∈ HL)
135 hlop 34967 . . . . . . . . . . . . . . . 16 (𝐾 ∈ HL → 𝐾 ∈ OP)
136134, 135syl 17 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → 𝐾 ∈ OP)
13724, 1lhpbase 35602 . . . . . . . . . . . . . . . 16 (𝑊𝐻𝑊𝐵)
138137ad3antlr 767 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → 𝑊𝐵)
139 eqid 2651 . . . . . . . . . . . . . . . 16 (oc‘𝐾) = (oc‘𝐾)
14024, 139opoccl 34799 . . . . . . . . . . . . . . 15 ((𝐾 ∈ OP ∧ 𝑊𝐵) → ((oc‘𝐾)‘𝑊) ∈ 𝐵)
141136, 138, 140syl2anc 694 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → ((oc‘𝐾)‘𝑊) ∈ 𝐵)
14292, 141syl5eqel 2734 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → 𝑃𝐵)
14324, 1, 13ltrncl 35729 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐽𝑠)‘𝑓) ∈ 𝑇𝑃𝐵) → (((𝐽𝑠)‘𝑓)‘𝑃) ∈ 𝐵)
14447, 119, 142, 143syl3anc 1366 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → (((𝐽𝑠)‘𝑓)‘𝑃) ∈ 𝐵)
145 fnfvelrn 6396 . . . . . . . . . . . 12 ((𝐼 Fn 𝐵 ∧ (((𝐽𝑠)‘𝑓)‘𝑃) ∈ 𝐵) → (𝐼‘(((𝐽𝑠)‘𝑓)‘𝑃)) ∈ ran 𝐼)
146133, 144, 145syl2anc 694 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → (𝐼‘(((𝐽𝑠)‘𝑓)‘𝑃)) ∈ ran 𝐼)
147130, 146eqeltrd 2730 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → (𝑁‘{⟨𝑓, 𝑠⟩}) ∈ ran 𝐼)
14846, 147pm2.61dane 2910 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) → (𝑁‘{⟨𝑓, 𝑠⟩}) ∈ ran 𝐼)
149148ralrimivva 3000 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∀𝑓𝑇𝑠𝐸 (𝑁‘{⟨𝑓, 𝑠⟩}) ∈ ran 𝐼)
150 sneq 4220 . . . . . . . . . . 11 (𝑣 = ⟨𝑓, 𝑠⟩ → {𝑣} = {⟨𝑓, 𝑠⟩})
151150fveq2d 6233 . . . . . . . . . 10 (𝑣 = ⟨𝑓, 𝑠⟩ → (𝑁‘{𝑣}) = (𝑁‘{⟨𝑓, 𝑠⟩}))
152151eleq1d 2715 . . . . . . . . 9 (𝑣 = ⟨𝑓, 𝑠⟩ → ((𝑁‘{𝑣}) ∈ ran 𝐼 ↔ (𝑁‘{⟨𝑓, 𝑠⟩}) ∈ ran 𝐼))
153152ralxp 5296 . . . . . . . 8 (∀𝑣 ∈ (𝑇 × 𝐸)(𝑁‘{𝑣}) ∈ ran 𝐼 ↔ ∀𝑓𝑇𝑠𝐸 (𝑁‘{⟨𝑓, 𝑠⟩}) ∈ ran 𝐼)
154149, 153sylibr 224 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∀𝑣 ∈ (𝑇 × 𝐸)(𝑁‘{𝑣}) ∈ ran 𝐼)
155154r19.21bi 2961 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑣 ∈ (𝑇 × 𝐸)) → (𝑁‘{𝑣}) ∈ ran 𝐼)
15618, 155syldan 486 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑣 ∈ (𝑉 ∖ { 0 })) → (𝑁‘{𝑣}) ∈ ran 𝐼)
157 eleq1a 2725 . . . . 5 ((𝑁‘{𝑣}) ∈ ran 𝐼 → (𝐷 = (𝑁‘{𝑣}) → 𝐷 ∈ ran 𝐼))
158156, 157syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑣 ∈ (𝑉 ∖ { 0 })) → (𝐷 = (𝑁‘{𝑣}) → 𝐷 ∈ ran 𝐼))
159158rexlimdva 3060 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (∃𝑣 ∈ (𝑉 ∖ { 0 })𝐷 = (𝑁‘{𝑣}) → 𝐷 ∈ ran 𝐼))
160159adantr 480 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐷𝐴) → (∃𝑣 ∈ (𝑉 ∖ { 0 })𝐷 = (𝑁‘{𝑣}) → 𝐷 ∈ ran 𝐼))
16111, 160mpd 15 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐷𝐴) → 𝐷 ∈ ran 𝐼)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 383   ∧ w3a 1054   = wceq 1523   ∈ wcel 2030  {cab 2637   ≠ wne 2823  ∀wral 2941  ∃wrex 2942  {crab 2945   ∖ cdif 3604   ⊆ wss 3607  {csn 4210  ⟨cop 4216   class class class wbr 4685  {copab 4745   ↦ cmpt 4762   I cid 5052   × cxp 5141  ran crn 5144   ↾ cres 5145   ∘ ccom 5147  Rel wrel 5148   Fn wfn 5921  –1-1→wf1 5923  ‘cfv 5926  ℩crio 6650  (class class class)co 6690  Basecbs 15904  Scalarcsca 15991   ·𝑠 cvsca 15992  lecple 15995  occoc 15996  0gc0g 16147  invrcinvr 18717  LModclmod 18911  LSubSpclss 18980  LSpanclspn 19019  LVecclvec 19150  LSAtomsclsa 34579  OPcops 34777  Atomscatm 34868  HLchlt 34955  LHypclh 35588  LTrncltrn 35705  trLctrl 35763  TEndoctendo 36357  DVecHcdvh 36684  DIsoBcdib 36744  DIsoCcdic 36778  DIsoHcdih 36834 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-riotaBAD 34557 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-tpos 7397  df-undef 7444  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-n0 11331  df-z 11416  df-uz 11726  df-fz 12365  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-sca 16004  df-vsca 16005  df-0g 16149  df-preset 16975  df-poset 16993  df-plt 17005  df-lub 17021  df-glb 17022  df-join 17023  df-meet 17024  df-p0 17086  df-p1 17087  df-lat 17093  df-clat 17155  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-submnd 17383  df-grp 17472  df-minusg 17473  df-sbg 17474  df-subg 17638  df-cntz 17796  df-lsm 18097  df-cmn 18241  df-abl 18242  df-mgp 18536  df-ur 18548  df-ring 18595  df-oppr 18669  df-dvdsr 18687  df-unit 18688  df-invr 18718  df-dvr 18729  df-drng 18797  df-lmod 18913  df-lss 18981  df-lsp 19020  df-lvec 19151  df-lsatoms 34581  df-oposet 34781  df-ol 34783  df-oml 34784  df-covers 34871  df-ats 34872  df-atl 34903  df-cvlat 34927  df-hlat 34956  df-llines 35102  df-lplanes 35103  df-lvols 35104  df-lines 35105  df-psubsp 35107  df-pmap 35108  df-padd 35400  df-lhyp 35592  df-laut 35593  df-ldil 35708  df-ltrn 35709  df-trl 35764  df-tendo 36360  df-edring 36362  df-disoa 36635  df-dvech 36685  df-dib 36745  df-dic 36779  df-dih 36835 This theorem is referenced by:  dih1dimat  36936
 Copyright terms: Public domain W3C validator