Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dih1dimatlem0 Structured version   Visualization version   GIF version

Theorem dih1dimatlem0 38468
Description: Lemma for dih1dimat 38470. (Contributed by NM, 11-Apr-2014.)
Hypotheses
Ref Expression
dih1dimat.h 𝐻 = (LHyp‘𝐾)
dih1dimat.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dih1dimat.i 𝐼 = ((DIsoH‘𝐾)‘𝑊)
dih1dimat.a 𝐴 = (LSAtoms‘𝑈)
dih1dimat.b 𝐵 = (Base‘𝐾)
dih1dimat.l = (le‘𝐾)
dih1dimat.c 𝐶 = (Atoms‘𝐾)
dih1dimat.p 𝑃 = ((oc‘𝐾)‘𝑊)
dih1dimat.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dih1dimat.r 𝑅 = ((trL‘𝐾)‘𝑊)
dih1dimat.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dih1dimat.o 𝑂 = (𝑇 ↦ ( I ↾ 𝐵))
dih1dimat.d 𝐹 = (Scalar‘𝑈)
dih1dimat.j 𝐽 = (invr𝐹)
dih1dimat.v 𝑉 = (Base‘𝑈)
dih1dimat.m · = ( ·𝑠𝑈)
dih1dimat.s 𝑆 = (LSubSp‘𝑈)
dih1dimat.n 𝑁 = (LSpan‘𝑈)
dih1dimat.z 0 = (0g𝑈)
dih1dimat.g 𝐺 = (𝑇 (𝑃) = (((𝐽𝑠)‘𝑓)‘𝑃))
Assertion
Ref Expression
dih1dimatlem0 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) → ((𝑖 = (𝑝𝐺) ∧ 𝑝𝐸) ↔ ((𝑖𝑇𝑝𝐸) ∧ ∃𝑡𝐸 (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠)))))
Distinct variable groups:   ,   𝐵,   𝑓,𝑖,𝑝,𝑠,𝑡,𝐸   𝑡,𝐹   𝐶,   𝑖,𝐺,𝑝,𝑡   𝑡,,𝐽   𝑓,𝑁,𝑠,𝑡   𝑓,,𝐾,𝑖,𝑝,𝑠,𝑡   𝑇,𝑓,,𝑖,𝑝,𝑠,𝑡   𝑈,𝑓,,𝑠,𝑡   𝑓,𝐻,,𝑖,𝑝,𝑠,𝑡   𝑓,𝑉,𝑖,𝑝,𝑠,𝑡   𝑓,𝑊,,𝑖,𝑝,𝑠,𝑡   𝑓,𝐼,𝑠   𝑖,𝑂,𝑝,𝑡   𝑃,   𝑡, ·
Allowed substitution hints:   𝐴(𝑡,𝑓,,𝑖,𝑠,𝑝)   𝐵(𝑡,𝑓,𝑖,𝑠,𝑝)   𝐶(𝑡,𝑓,𝑖,𝑠,𝑝)   𝑃(𝑡,𝑓,𝑖,𝑠,𝑝)   𝑅(𝑡,𝑓,,𝑖,𝑠,𝑝)   𝑆(𝑡,𝑓,,𝑖,𝑠,𝑝)   · (𝑓,,𝑖,𝑠,𝑝)   𝑈(𝑖,𝑝)   𝐸()   𝐹(𝑓,,𝑖,𝑠,𝑝)   𝐺(𝑓,,𝑠)   𝐼(𝑡,,𝑖,𝑝)   𝐽(𝑓,𝑖,𝑠,𝑝)   (𝑡,𝑓,𝑖,𝑠,𝑝)   𝑁(,𝑖,𝑝)   𝑂(𝑓,,𝑠)   𝑉()   0 (𝑡,𝑓,,𝑖,𝑠,𝑝)

Proof of Theorem dih1dimatlem0
StepHypRef Expression
1 simprl 769 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → 𝑖 = (𝑝𝐺))
2 simpl1 1187 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3 simprr 771 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → 𝑝𝐸)
4 dih1dimat.l . . . . . . . 8 = (le‘𝐾)
5 dih1dimat.c . . . . . . . 8 𝐶 = (Atoms‘𝐾)
6 dih1dimat.h . . . . . . . 8 𝐻 = (LHyp‘𝐾)
7 dih1dimat.p . . . . . . . 8 𝑃 = ((oc‘𝐾)‘𝑊)
84, 5, 6, 7lhpocnel2 37159 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑃𝐶 ∧ ¬ 𝑃 𝑊))
92, 8syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → (𝑃𝐶 ∧ ¬ 𝑃 𝑊))
10 simpl2r 1223 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → 𝑠𝐸)
11 simpl3 1189 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → 𝑠𝑂)
12 dih1dimat.b . . . . . . . . . . 11 𝐵 = (Base‘𝐾)
13 dih1dimat.t . . . . . . . . . . 11 𝑇 = ((LTrn‘𝐾)‘𝑊)
14 dih1dimat.e . . . . . . . . . . 11 𝐸 = ((TEndo‘𝐾)‘𝑊)
15 dih1dimat.o . . . . . . . . . . 11 𝑂 = (𝑇 ↦ ( I ↾ 𝐵))
16 dih1dimat.u . . . . . . . . . . 11 𝑈 = ((DVecH‘𝐾)‘𝑊)
17 dih1dimat.d . . . . . . . . . . 11 𝐹 = (Scalar‘𝑈)
18 dih1dimat.j . . . . . . . . . . 11 𝐽 = (invr𝐹)
1912, 6, 13, 14, 15, 16, 17, 18tendoinvcl 38244 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑠𝑂) → ((𝐽𝑠) ∈ 𝐸 ∧ (𝐽𝑠) ≠ 𝑂))
2019simpld 497 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑠𝑂) → (𝐽𝑠) ∈ 𝐸)
212, 10, 11, 20syl3anc 1367 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → (𝐽𝑠) ∈ 𝐸)
22 simpl2l 1222 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → 𝑓𝑇)
236, 13, 14tendocl 37907 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐽𝑠) ∈ 𝐸𝑓𝑇) → ((𝐽𝑠)‘𝑓) ∈ 𝑇)
242, 21, 22, 23syl3anc 1367 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → ((𝐽𝑠)‘𝑓) ∈ 𝑇)
254, 5, 6, 13ltrnel 37279 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐽𝑠)‘𝑓) ∈ 𝑇 ∧ (𝑃𝐶 ∧ ¬ 𝑃 𝑊)) → ((((𝐽𝑠)‘𝑓)‘𝑃) ∈ 𝐶 ∧ ¬ (((𝐽𝑠)‘𝑓)‘𝑃) 𝑊))
262, 24, 9, 25syl3anc 1367 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → ((((𝐽𝑠)‘𝑓)‘𝑃) ∈ 𝐶 ∧ ¬ (((𝐽𝑠)‘𝑓)‘𝑃) 𝑊))
27 dih1dimat.g . . . . . . 7 𝐺 = (𝑇 (𝑃) = (((𝐽𝑠)‘𝑓)‘𝑃))
284, 5, 6, 13, 27ltrniotacl 37719 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐶 ∧ ¬ 𝑃 𝑊) ∧ ((((𝐽𝑠)‘𝑓)‘𝑃) ∈ 𝐶 ∧ ¬ (((𝐽𝑠)‘𝑓)‘𝑃) 𝑊)) → 𝐺𝑇)
292, 9, 26, 28syl3anc 1367 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → 𝐺𝑇)
306, 13, 14tendocl 37907 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑝𝐸𝐺𝑇) → (𝑝𝐺) ∈ 𝑇)
312, 3, 29, 30syl3anc 1367 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → (𝑝𝐺) ∈ 𝑇)
321, 31eqeltrd 2916 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → 𝑖𝑇)
336, 14tendococl 37912 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑝𝐸 ∧ (𝐽𝑠) ∈ 𝐸) → (𝑝 ∘ (𝐽𝑠)) ∈ 𝐸)
342, 3, 21, 33syl3anc 1367 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → (𝑝 ∘ (𝐽𝑠)) ∈ 𝐸)
35 simp1 1132 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3683ad2ant1 1129 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) → (𝑃𝐶 ∧ ¬ 𝑃 𝑊))
37203adant2l 1174 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) → (𝐽𝑠) ∈ 𝐸)
38 simp2l 1195 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) → 𝑓𝑇)
3935, 37, 38, 23syl3anc 1367 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) → ((𝐽𝑠)‘𝑓) ∈ 𝑇)
4035, 39, 36, 25syl3anc 1367 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) → ((((𝐽𝑠)‘𝑓)‘𝑃) ∈ 𝐶 ∧ ¬ (((𝐽𝑠)‘𝑓)‘𝑃) 𝑊))
4135, 36, 40, 28syl3anc 1367 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) → 𝐺𝑇)
424, 5, 6, 13, 27ltrniotaval 37721 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐶 ∧ ¬ 𝑃 𝑊) ∧ ((((𝐽𝑠)‘𝑓)‘𝑃) ∈ 𝐶 ∧ ¬ (((𝐽𝑠)‘𝑓)‘𝑃) 𝑊)) → (𝐺𝑃) = (((𝐽𝑠)‘𝑓)‘𝑃))
4335, 36, 40, 42syl3anc 1367 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) → (𝐺𝑃) = (((𝐽𝑠)‘𝑓)‘𝑃))
444, 5, 6, 13cdlemd 37347 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇 ∧ ((𝐽𝑠)‘𝑓) ∈ 𝑇) ∧ (𝑃𝐶 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) = (((𝐽𝑠)‘𝑓)‘𝑃)) → 𝐺 = ((𝐽𝑠)‘𝑓))
4535, 41, 39, 36, 43, 44syl311anc 1380 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) → 𝐺 = ((𝐽𝑠)‘𝑓))
4645adantr 483 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → 𝐺 = ((𝐽𝑠)‘𝑓))
4746fveq2d 6677 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → (𝑝𝐺) = (𝑝‘((𝐽𝑠)‘𝑓)))
486, 13, 14tendocoval 37906 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝𝐸 ∧ (𝐽𝑠) ∈ 𝐸) ∧ 𝑓𝑇) → ((𝑝 ∘ (𝐽𝑠))‘𝑓) = (𝑝‘((𝐽𝑠)‘𝑓)))
492, 3, 21, 22, 48syl121anc 1371 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → ((𝑝 ∘ (𝐽𝑠))‘𝑓) = (𝑝‘((𝐽𝑠)‘𝑓)))
5047, 1, 493eqtr4d 2869 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → 𝑖 = ((𝑝 ∘ (𝐽𝑠))‘𝑓))
51 coass 6121 . . . . 5 ((𝑝 ∘ (𝐽𝑠)) ∘ 𝑠) = (𝑝 ∘ ((𝐽𝑠) ∘ 𝑠))
5212, 6, 13, 14, 15, 16, 17, 18tendolinv 38245 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑠𝑂) → ((𝐽𝑠) ∘ 𝑠) = ( I ↾ 𝑇))
532, 10, 11, 52syl3anc 1367 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → ((𝐽𝑠) ∘ 𝑠) = ( I ↾ 𝑇))
5453coeq2d 5736 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → (𝑝 ∘ ((𝐽𝑠) ∘ 𝑠)) = (𝑝 ∘ ( I ↾ 𝑇)))
556, 13, 14tendo1mulr 37911 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑝𝐸) → (𝑝 ∘ ( I ↾ 𝑇)) = 𝑝)
562, 3, 55syl2anc 586 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → (𝑝 ∘ ( I ↾ 𝑇)) = 𝑝)
5754, 56eqtrd 2859 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → (𝑝 ∘ ((𝐽𝑠) ∘ 𝑠)) = 𝑝)
5851, 57syl5req 2872 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → 𝑝 = ((𝑝 ∘ (𝐽𝑠)) ∘ 𝑠))
59 fveq1 6672 . . . . . . 7 (𝑡 = (𝑝 ∘ (𝐽𝑠)) → (𝑡𝑓) = ((𝑝 ∘ (𝐽𝑠))‘𝑓))
6059eqeq2d 2835 . . . . . 6 (𝑡 = (𝑝 ∘ (𝐽𝑠)) → (𝑖 = (𝑡𝑓) ↔ 𝑖 = ((𝑝 ∘ (𝐽𝑠))‘𝑓)))
61 coeq1 5731 . . . . . . 7 (𝑡 = (𝑝 ∘ (𝐽𝑠)) → (𝑡𝑠) = ((𝑝 ∘ (𝐽𝑠)) ∘ 𝑠))
6261eqeq2d 2835 . . . . . 6 (𝑡 = (𝑝 ∘ (𝐽𝑠)) → (𝑝 = (𝑡𝑠) ↔ 𝑝 = ((𝑝 ∘ (𝐽𝑠)) ∘ 𝑠)))
6360, 62anbi12d 632 . . . . 5 (𝑡 = (𝑝 ∘ (𝐽𝑠)) → ((𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠)) ↔ (𝑖 = ((𝑝 ∘ (𝐽𝑠))‘𝑓) ∧ 𝑝 = ((𝑝 ∘ (𝐽𝑠)) ∘ 𝑠))))
6463rspcev 3626 . . . 4 (((𝑝 ∘ (𝐽𝑠)) ∈ 𝐸 ∧ (𝑖 = ((𝑝 ∘ (𝐽𝑠))‘𝑓) ∧ 𝑝 = ((𝑝 ∘ (𝐽𝑠)) ∘ 𝑠))) → ∃𝑡𝐸 (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠)))
6534, 50, 58, 64syl12anc 834 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → ∃𝑡𝐸 (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠)))
6632, 3, 65jca31 517 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → ((𝑖𝑇𝑝𝐸) ∧ ∃𝑡𝐸 (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))))
67 simp3r 1198 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) ∧ 𝑡𝐸 ∧ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))) → 𝑝 = (𝑡𝑠))
6867fveq1d 6675 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) ∧ 𝑡𝐸 ∧ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))) → (𝑝‘((𝐽𝑠)‘𝑓)) = ((𝑡𝑠)‘((𝐽𝑠)‘𝑓)))
69 simp1l1 1262 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) ∧ 𝑡𝐸 ∧ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
70 simp2 1133 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) ∧ 𝑡𝐸 ∧ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))) → 𝑡𝐸)
71 simpl2r 1223 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) → 𝑠𝐸)
72713ad2ant1 1129 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) ∧ 𝑡𝐸 ∧ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))) → 𝑠𝐸)
736, 14tendococl 37912 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑡𝐸𝑠𝐸) → (𝑡𝑠) ∈ 𝐸)
7469, 70, 72, 73syl3anc 1367 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) ∧ 𝑡𝐸 ∧ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))) → (𝑡𝑠) ∈ 𝐸)
75 simp1l3 1264 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) ∧ 𝑡𝐸 ∧ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))) → 𝑠𝑂)
7669, 72, 75, 20syl3anc 1367 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) ∧ 𝑡𝐸 ∧ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))) → (𝐽𝑠) ∈ 𝐸)
77 simpl2l 1222 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) → 𝑓𝑇)
78773ad2ant1 1129 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) ∧ 𝑡𝐸 ∧ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))) → 𝑓𝑇)
796, 13, 14tendocoval 37906 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑡𝑠) ∈ 𝐸 ∧ (𝐽𝑠) ∈ 𝐸) ∧ 𝑓𝑇) → (((𝑡𝑠) ∘ (𝐽𝑠))‘𝑓) = ((𝑡𝑠)‘((𝐽𝑠)‘𝑓)))
8069, 74, 76, 78, 79syl121anc 1371 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) ∧ 𝑡𝐸 ∧ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))) → (((𝑡𝑠) ∘ (𝐽𝑠))‘𝑓) = ((𝑡𝑠)‘((𝐽𝑠)‘𝑓)))
81 coass 6121 . . . . . . . . 9 ((𝑡𝑠) ∘ (𝐽𝑠)) = (𝑡 ∘ (𝑠 ∘ (𝐽𝑠)))
8212, 6, 13, 14, 15, 16, 17, 18tendorinv 38246 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑠𝑂) → (𝑠 ∘ (𝐽𝑠)) = ( I ↾ 𝑇))
8369, 72, 75, 82syl3anc 1367 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) ∧ 𝑡𝐸 ∧ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))) → (𝑠 ∘ (𝐽𝑠)) = ( I ↾ 𝑇))
8483coeq2d 5736 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) ∧ 𝑡𝐸 ∧ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))) → (𝑡 ∘ (𝑠 ∘ (𝐽𝑠))) = (𝑡 ∘ ( I ↾ 𝑇)))
856, 13, 14tendo1mulr 37911 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑡𝐸) → (𝑡 ∘ ( I ↾ 𝑇)) = 𝑡)
8669, 70, 85syl2anc 586 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) ∧ 𝑡𝐸 ∧ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))) → (𝑡 ∘ ( I ↾ 𝑇)) = 𝑡)
8784, 86eqtrd 2859 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) ∧ 𝑡𝐸 ∧ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))) → (𝑡 ∘ (𝑠 ∘ (𝐽𝑠))) = 𝑡)
8881, 87syl5eq 2871 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) ∧ 𝑡𝐸 ∧ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))) → ((𝑡𝑠) ∘ (𝐽𝑠)) = 𝑡)
8988fveq1d 6675 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) ∧ 𝑡𝐸 ∧ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))) → (((𝑡𝑠) ∘ (𝐽𝑠))‘𝑓) = (𝑡𝑓))
9068, 80, 893eqtr2rd 2866 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) ∧ 𝑡𝐸 ∧ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))) → (𝑡𝑓) = (𝑝‘((𝐽𝑠)‘𝑓)))
91 simp3l 1197 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) ∧ 𝑡𝐸 ∧ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))) → 𝑖 = (𝑡𝑓))
9245adantr 483 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) → 𝐺 = ((𝐽𝑠)‘𝑓))
93923ad2ant1 1129 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) ∧ 𝑡𝐸 ∧ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))) → 𝐺 = ((𝐽𝑠)‘𝑓))
9493fveq2d 6677 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) ∧ 𝑡𝐸 ∧ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))) → (𝑝𝐺) = (𝑝‘((𝐽𝑠)‘𝑓)))
9590, 91, 943eqtr4d 2869 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) ∧ 𝑡𝐸 ∧ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))) → 𝑖 = (𝑝𝐺))
9695rexlimdv3a 3289 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) → (∃𝑡𝐸 (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠)) → 𝑖 = (𝑝𝐺)))
9796impr 457 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ ((𝑖𝑇𝑝𝐸) ∧ ∃𝑡𝐸 (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠)))) → 𝑖 = (𝑝𝐺))
98 simprlr 778 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ ((𝑖𝑇𝑝𝐸) ∧ ∃𝑡𝐸 (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠)))) → 𝑝𝐸)
9997, 98jca 514 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ ((𝑖𝑇𝑝𝐸) ∧ ∃𝑡𝐸 (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠)))) → (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸))
10066, 99impbida 799 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) → ((𝑖 = (𝑝𝐺) ∧ 𝑝𝐸) ↔ ((𝑖𝑇𝑝𝐸) ∧ ∃𝑡𝐸 (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1536  wcel 2113  wne 3019  wrex 3142   class class class wbr 5069  cmpt 5149   I cid 5462  cres 5560  ccom 5562  cfv 6358  crio 7116  Basecbs 16486  Scalarcsca 16571   ·𝑠 cvsca 16572  lecple 16575  occoc 16576  0gc0g 16716  invrcinvr 19424  LSubSpclss 19706  LSpanclspn 19746  LSAtomsclsa 36114  Atomscatm 36403  HLchlt 36490  LHypclh 37124  LTrncltrn 37241  trLctrl 37298  TEndoctendo 37892  DVecHcdvh 38218  DIsoHcdih 38368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-riotaBAD 36093
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-fal 1549  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-iin 4925  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-tpos 7895  df-undef 7942  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-oadd 8109  df-er 8292  df-map 8411  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-nn 11642  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-n0 11901  df-z 11985  df-uz 12247  df-fz 12896  df-struct 16488  df-ndx 16489  df-slot 16490  df-base 16492  df-sets 16493  df-ress 16494  df-plusg 16581  df-mulr 16582  df-sca 16584  df-vsca 16585  df-0g 16718  df-proset 17541  df-poset 17559  df-plt 17571  df-lub 17587  df-glb 17588  df-join 17589  df-meet 17590  df-p0 17652  df-p1 17653  df-lat 17659  df-clat 17721  df-mgm 17855  df-sgrp 17904  df-mnd 17915  df-grp 18109  df-minusg 18110  df-mgp 19243  df-ur 19255  df-ring 19302  df-oppr 19376  df-dvdsr 19394  df-unit 19395  df-invr 19425  df-dvr 19436  df-drng 19507  df-oposet 36316  df-ol 36318  df-oml 36319  df-covers 36406  df-ats 36407  df-atl 36438  df-cvlat 36462  df-hlat 36491  df-llines 36638  df-lplanes 36639  df-lvols 36640  df-lines 36641  df-psubsp 36643  df-pmap 36644  df-padd 36936  df-lhyp 37128  df-laut 37129  df-ldil 37244  df-ltrn 37245  df-trl 37299  df-tendo 37895  df-edring 37897  df-dvech 38219
This theorem is referenced by:  dih1dimatlem  38469
  Copyright terms: Public domain W3C validator