Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihatexv Structured version   Visualization version   GIF version

Theorem dihatexv 38473
Description: There is a nonzero vector that maps to every lattice atom. (Contributed by NM, 16-Aug-2014.)
Hypotheses
Ref Expression
dihatexv.b 𝐵 = (Base‘𝐾)
dihatexv.a 𝐴 = (Atoms‘𝐾)
dihatexv.h 𝐻 = (LHyp‘𝐾)
dihatexv.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dihatexv.v 𝑉 = (Base‘𝑈)
dihatexv.o 0 = (0g𝑈)
dihatexv.n 𝑁 = (LSpan‘𝑈)
dihatexv.i 𝐼 = ((DIsoH‘𝐾)‘𝑊)
dihatexv.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
dihatexv.q (𝜑𝑄𝐵)
Assertion
Ref Expression
dihatexv (𝜑 → (𝑄𝐴 ↔ ∃𝑥 ∈ (𝑉 ∖ { 0 })(𝐼𝑄) = (𝑁‘{𝑥})))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐼   𝑥,𝐾   𝑥,𝑁   𝑥,𝑄   𝑥,𝑉   𝑥,𝑊   𝜑,𝑥
Allowed substitution hints:   𝑈(𝑥)   𝐻(𝑥)   0 (𝑥)

Proof of Theorem dihatexv
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dihatexv.k . . . . . . . . 9 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
21ad2antrr 724 . . . . . . . 8 (((𝜑𝑄𝐴) ∧ 𝑄(le‘𝐾)𝑊) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3 simplr 767 . . . . . . . 8 (((𝜑𝑄𝐴) ∧ 𝑄(le‘𝐾)𝑊) → 𝑄𝐴)
4 simpr 487 . . . . . . . 8 (((𝜑𝑄𝐴) ∧ 𝑄(le‘𝐾)𝑊) → 𝑄(le‘𝐾)𝑊)
5 dihatexv.b . . . . . . . . 9 𝐵 = (Base‘𝐾)
6 eqid 2821 . . . . . . . . 9 (le‘𝐾) = (le‘𝐾)
7 dihatexv.a . . . . . . . . 9 𝐴 = (Atoms‘𝐾)
8 dihatexv.h . . . . . . . . 9 𝐻 = (LHyp‘𝐾)
9 eqid 2821 . . . . . . . . 9 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
10 eqid 2821 . . . . . . . . 9 (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)) = (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))
11 dihatexv.u . . . . . . . . 9 𝑈 = ((DVecH‘𝐾)‘𝑊)
12 dihatexv.i . . . . . . . . 9 𝐼 = ((DIsoH‘𝐾)‘𝑊)
13 dihatexv.n . . . . . . . . 9 𝑁 = (LSpan‘𝑈)
145, 6, 7, 8, 9, 10, 11, 12, 13dih1dimb2 38376 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴𝑄(le‘𝐾)𝑊)) → ∃𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔 ≠ ( I ↾ 𝐵) ∧ (𝐼𝑄) = (𝑁‘{⟨𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))⟩})))
152, 3, 4, 14syl12anc 834 . . . . . . 7 (((𝜑𝑄𝐴) ∧ 𝑄(le‘𝐾)𝑊) → ∃𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔 ≠ ( I ↾ 𝐵) ∧ (𝐼𝑄) = (𝑁‘{⟨𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))⟩})))
161ad3antrrr 728 . . . . . . . . . . . 12 ((((𝜑𝑄𝐴) ∧ 𝑄(le‘𝐾)𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
17 simpr 487 . . . . . . . . . . . 12 ((((𝜑𝑄𝐴) ∧ 𝑄(le‘𝐾)𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → 𝑔 ∈ ((LTrn‘𝐾)‘𝑊))
18 eqid 2821 . . . . . . . . . . . . . 14 ((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊)
195, 8, 9, 18, 10tendo0cl 37925 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)) ∈ ((TEndo‘𝐾)‘𝑊))
2016, 19syl 17 . . . . . . . . . . . 12 ((((𝜑𝑄𝐴) ∧ 𝑄(le‘𝐾)𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)) ∈ ((TEndo‘𝐾)‘𝑊))
21 dihatexv.v . . . . . . . . . . . . 13 𝑉 = (Base‘𝑈)
228, 9, 18, 11, 21dvhelvbasei 38223 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ∧ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)) ∈ ((TEndo‘𝐾)‘𝑊))) → ⟨𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))⟩ ∈ 𝑉)
2316, 17, 20, 22syl12anc 834 . . . . . . . . . . 11 ((((𝜑𝑄𝐴) ∧ 𝑄(le‘𝐾)𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → ⟨𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))⟩ ∈ 𝑉)
24 sneq 4576 . . . . . . . . . . . . 13 (𝑥 = ⟨𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))⟩ → {𝑥} = {⟨𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))⟩})
2524fveq2d 6673 . . . . . . . . . . . 12 (𝑥 = ⟨𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))⟩ → (𝑁‘{𝑥}) = (𝑁‘{⟨𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))⟩}))
2625rspceeqv 3637 . . . . . . . . . . 11 ((⟨𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))⟩ ∈ 𝑉 ∧ (𝐼𝑄) = (𝑁‘{⟨𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))⟩})) → ∃𝑥𝑉 (𝐼𝑄) = (𝑁‘{𝑥}))
2723, 26sylan 582 . . . . . . . . . 10 (((((𝜑𝑄𝐴) ∧ 𝑄(le‘𝐾)𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) ∧ (𝐼𝑄) = (𝑁‘{⟨𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))⟩})) → ∃𝑥𝑉 (𝐼𝑄) = (𝑁‘{𝑥}))
2827ex 415 . . . . . . . . 9 ((((𝜑𝑄𝐴) ∧ 𝑄(le‘𝐾)𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → ((𝐼𝑄) = (𝑁‘{⟨𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))⟩}) → ∃𝑥𝑉 (𝐼𝑄) = (𝑁‘{𝑥})))
2928adantld 493 . . . . . . . 8 ((((𝜑𝑄𝐴) ∧ 𝑄(le‘𝐾)𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → ((𝑔 ≠ ( I ↾ 𝐵) ∧ (𝐼𝑄) = (𝑁‘{⟨𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))⟩})) → ∃𝑥𝑉 (𝐼𝑄) = (𝑁‘{𝑥})))
3029rexlimdva 3284 . . . . . . 7 (((𝜑𝑄𝐴) ∧ 𝑄(le‘𝐾)𝑊) → (∃𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔 ≠ ( I ↾ 𝐵) ∧ (𝐼𝑄) = (𝑁‘{⟨𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))⟩})) → ∃𝑥𝑉 (𝐼𝑄) = (𝑁‘{𝑥})))
3115, 30mpd 15 . . . . . 6 (((𝜑𝑄𝐴) ∧ 𝑄(le‘𝐾)𝑊) → ∃𝑥𝑉 (𝐼𝑄) = (𝑁‘{𝑥}))
321ad2antrr 724 . . . . . . . 8 (((𝜑𝑄𝐴) ∧ ¬ 𝑄(le‘𝐾)𝑊) → (𝐾 ∈ HL ∧ 𝑊𝐻))
33 eqid 2821 . . . . . . . . . . 11 ((oc‘𝐾)‘𝑊) = ((oc‘𝐾)‘𝑊)
346, 7, 8, 33lhpocnel2 37154 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (((oc‘𝐾)‘𝑊) ∈ 𝐴 ∧ ¬ ((oc‘𝐾)‘𝑊)(le‘𝐾)𝑊))
3532, 34syl 17 . . . . . . . . 9 (((𝜑𝑄𝐴) ∧ ¬ 𝑄(le‘𝐾)𝑊) → (((oc‘𝐾)‘𝑊) ∈ 𝐴 ∧ ¬ ((oc‘𝐾)‘𝑊)(le‘𝐾)𝑊))
36 simplr 767 . . . . . . . . 9 (((𝜑𝑄𝐴) ∧ ¬ 𝑄(le‘𝐾)𝑊) → 𝑄𝐴)
37 simpr 487 . . . . . . . . 9 (((𝜑𝑄𝐴) ∧ ¬ 𝑄(le‘𝐾)𝑊) → ¬ 𝑄(le‘𝐾)𝑊)
38 eqid 2821 . . . . . . . . . 10 (𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄) = (𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄)
396, 7, 8, 9, 38ltrniotacl 37714 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (((oc‘𝐾)‘𝑊) ∈ 𝐴 ∧ ¬ ((oc‘𝐾)‘𝑊)(le‘𝐾)𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄(le‘𝐾)𝑊)) → (𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄) ∈ ((LTrn‘𝐾)‘𝑊))
4032, 35, 36, 37, 39syl112anc 1370 . . . . . . . 8 (((𝜑𝑄𝐴) ∧ ¬ 𝑄(le‘𝐾)𝑊) → (𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄) ∈ ((LTrn‘𝐾)‘𝑊))
418, 9, 18tendoidcl 37904 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ ((LTrn‘𝐾)‘𝑊)) ∈ ((TEndo‘𝐾)‘𝑊))
4232, 41syl 17 . . . . . . . 8 (((𝜑𝑄𝐴) ∧ ¬ 𝑄(le‘𝐾)𝑊) → ( I ↾ ((LTrn‘𝐾)‘𝑊)) ∈ ((TEndo‘𝐾)‘𝑊))
438, 9, 18, 11, 21dvhelvbasei 38223 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄) ∈ ((LTrn‘𝐾)‘𝑊) ∧ ( I ↾ ((LTrn‘𝐾)‘𝑊)) ∈ ((TEndo‘𝐾)‘𝑊))) → ⟨(𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩ ∈ 𝑉)
4432, 40, 42, 43syl12anc 834 . . . . . . 7 (((𝜑𝑄𝐴) ∧ ¬ 𝑄(le‘𝐾)𝑊) → ⟨(𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩ ∈ 𝑉)
456, 7, 8, 33, 9, 12, 11, 13, 38dih1dimc 38377 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄(le‘𝐾)𝑊)) → (𝐼𝑄) = (𝑁‘{⟨(𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩}))
4632, 36, 37, 45syl12anc 834 . . . . . . 7 (((𝜑𝑄𝐴) ∧ ¬ 𝑄(le‘𝐾)𝑊) → (𝐼𝑄) = (𝑁‘{⟨(𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩}))
47 sneq 4576 . . . . . . . . 9 (𝑥 = ⟨(𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩ → {𝑥} = {⟨(𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩})
4847fveq2d 6673 . . . . . . . 8 (𝑥 = ⟨(𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩ → (𝑁‘{𝑥}) = (𝑁‘{⟨(𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩}))
4948rspceeqv 3637 . . . . . . 7 ((⟨(𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩ ∈ 𝑉 ∧ (𝐼𝑄) = (𝑁‘{⟨(𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩})) → ∃𝑥𝑉 (𝐼𝑄) = (𝑁‘{𝑥}))
5044, 46, 49syl2anc 586 . . . . . 6 (((𝜑𝑄𝐴) ∧ ¬ 𝑄(le‘𝐾)𝑊) → ∃𝑥𝑉 (𝐼𝑄) = (𝑁‘{𝑥}))
5131, 50pm2.61dan 811 . . . . 5 ((𝜑𝑄𝐴) → ∃𝑥𝑉 (𝐼𝑄) = (𝑁‘{𝑥}))
521simpld 497 . . . . . . . . . . . 12 (𝜑𝐾 ∈ HL)
5352ad3antrrr 728 . . . . . . . . . . 11 ((((𝜑𝑄𝐴) ∧ 𝑥𝑉) ∧ (𝐼𝑄) = (𝑁‘{𝑥})) → 𝐾 ∈ HL)
54 hlatl 36495 . . . . . . . . . . 11 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
5553, 54syl 17 . . . . . . . . . 10 ((((𝜑𝑄𝐴) ∧ 𝑥𝑉) ∧ (𝐼𝑄) = (𝑁‘{𝑥})) → 𝐾 ∈ AtLat)
56 simpllr 774 . . . . . . . . . 10 ((((𝜑𝑄𝐴) ∧ 𝑥𝑉) ∧ (𝐼𝑄) = (𝑁‘{𝑥})) → 𝑄𝐴)
57 eqid 2821 . . . . . . . . . . 11 (0.‘𝐾) = (0.‘𝐾)
5857, 7atn0 36443 . . . . . . . . . 10 ((𝐾 ∈ AtLat ∧ 𝑄𝐴) → 𝑄 ≠ (0.‘𝐾))
5955, 56, 58syl2anc 586 . . . . . . . . 9 ((((𝜑𝑄𝐴) ∧ 𝑥𝑉) ∧ (𝐼𝑄) = (𝑁‘{𝑥})) → 𝑄 ≠ (0.‘𝐾))
60 sneq 4576 . . . . . . . . . . . . . . . 16 (𝑥 = 0 → {𝑥} = { 0 })
6160fveq2d 6673 . . . . . . . . . . . . . . 15 (𝑥 = 0 → (𝑁‘{𝑥}) = (𝑁‘{ 0 }))
62613ad2ant3 1131 . . . . . . . . . . . . . 14 ((((𝜑𝑄𝐴) ∧ 𝑥𝑉) ∧ (𝐼𝑄) = (𝑁‘{𝑥}) ∧ 𝑥 = 0 ) → (𝑁‘{𝑥}) = (𝑁‘{ 0 }))
63 simp1ll 1232 . . . . . . . . . . . . . . 15 ((((𝜑𝑄𝐴) ∧ 𝑥𝑉) ∧ (𝐼𝑄) = (𝑁‘{𝑥}) ∧ 𝑥 = 0 ) → 𝜑)
648, 11, 1dvhlmod 38245 . . . . . . . . . . . . . . 15 (𝜑𝑈 ∈ LMod)
65 dihatexv.o . . . . . . . . . . . . . . . 16 0 = (0g𝑈)
6665, 13lspsn0 19779 . . . . . . . . . . . . . . 15 (𝑈 ∈ LMod → (𝑁‘{ 0 }) = { 0 })
6763, 64, 663syl 18 . . . . . . . . . . . . . 14 ((((𝜑𝑄𝐴) ∧ 𝑥𝑉) ∧ (𝐼𝑄) = (𝑁‘{𝑥}) ∧ 𝑥 = 0 ) → (𝑁‘{ 0 }) = { 0 })
6862, 67eqtrd 2856 . . . . . . . . . . . . 13 ((((𝜑𝑄𝐴) ∧ 𝑥𝑉) ∧ (𝐼𝑄) = (𝑁‘{𝑥}) ∧ 𝑥 = 0 ) → (𝑁‘{𝑥}) = { 0 })
69 simp2 1133 . . . . . . . . . . . . 13 ((((𝜑𝑄𝐴) ∧ 𝑥𝑉) ∧ (𝐼𝑄) = (𝑁‘{𝑥}) ∧ 𝑥 = 0 ) → (𝐼𝑄) = (𝑁‘{𝑥}))
7057, 8, 12, 11, 65dih0 38415 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐼‘(0.‘𝐾)) = { 0 })
7163, 1, 703syl 18 . . . . . . . . . . . . 13 ((((𝜑𝑄𝐴) ∧ 𝑥𝑉) ∧ (𝐼𝑄) = (𝑁‘{𝑥}) ∧ 𝑥 = 0 ) → (𝐼‘(0.‘𝐾)) = { 0 })
7268, 69, 713eqtr4d 2866 . . . . . . . . . . . 12 ((((𝜑𝑄𝐴) ∧ 𝑥𝑉) ∧ (𝐼𝑄) = (𝑁‘{𝑥}) ∧ 𝑥 = 0 ) → (𝐼𝑄) = (𝐼‘(0.‘𝐾)))
7363, 1syl 17 . . . . . . . . . . . . 13 ((((𝜑𝑄𝐴) ∧ 𝑥𝑉) ∧ (𝐼𝑄) = (𝑁‘{𝑥}) ∧ 𝑥 = 0 ) → (𝐾 ∈ HL ∧ 𝑊𝐻))
74 dihatexv.q . . . . . . . . . . . . . 14 (𝜑𝑄𝐵)
7563, 74syl 17 . . . . . . . . . . . . 13 ((((𝜑𝑄𝐴) ∧ 𝑥𝑉) ∧ (𝐼𝑄) = (𝑁‘{𝑥}) ∧ 𝑥 = 0 ) → 𝑄𝐵)
7663, 52syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝑄𝐴) ∧ 𝑥𝑉) ∧ (𝐼𝑄) = (𝑁‘{𝑥}) ∧ 𝑥 = 0 ) → 𝐾 ∈ HL)
77 hlop 36497 . . . . . . . . . . . . . 14 (𝐾 ∈ HL → 𝐾 ∈ OP)
785, 57op0cl 36319 . . . . . . . . . . . . . 14 (𝐾 ∈ OP → (0.‘𝐾) ∈ 𝐵)
7976, 77, 783syl 18 . . . . . . . . . . . . 13 ((((𝜑𝑄𝐴) ∧ 𝑥𝑉) ∧ (𝐼𝑄) = (𝑁‘{𝑥}) ∧ 𝑥 = 0 ) → (0.‘𝐾) ∈ 𝐵)
805, 8, 12dih11 38400 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑄𝐵 ∧ (0.‘𝐾) ∈ 𝐵) → ((𝐼𝑄) = (𝐼‘(0.‘𝐾)) ↔ 𝑄 = (0.‘𝐾)))
8173, 75, 79, 80syl3anc 1367 . . . . . . . . . . . 12 ((((𝜑𝑄𝐴) ∧ 𝑥𝑉) ∧ (𝐼𝑄) = (𝑁‘{𝑥}) ∧ 𝑥 = 0 ) → ((𝐼𝑄) = (𝐼‘(0.‘𝐾)) ↔ 𝑄 = (0.‘𝐾)))
8272, 81mpbid 234 . . . . . . . . . . 11 ((((𝜑𝑄𝐴) ∧ 𝑥𝑉) ∧ (𝐼𝑄) = (𝑁‘{𝑥}) ∧ 𝑥 = 0 ) → 𝑄 = (0.‘𝐾))
83823expia 1117 . . . . . . . . . 10 ((((𝜑𝑄𝐴) ∧ 𝑥𝑉) ∧ (𝐼𝑄) = (𝑁‘{𝑥})) → (𝑥 = 0𝑄 = (0.‘𝐾)))
8483necon3d 3037 . . . . . . . . 9 ((((𝜑𝑄𝐴) ∧ 𝑥𝑉) ∧ (𝐼𝑄) = (𝑁‘{𝑥})) → (𝑄 ≠ (0.‘𝐾) → 𝑥0 ))
8559, 84mpd 15 . . . . . . . 8 ((((𝜑𝑄𝐴) ∧ 𝑥𝑉) ∧ (𝐼𝑄) = (𝑁‘{𝑥})) → 𝑥0 )
8685ex 415 . . . . . . 7 (((𝜑𝑄𝐴) ∧ 𝑥𝑉) → ((𝐼𝑄) = (𝑁‘{𝑥}) → 𝑥0 ))
8786ancrd 554 . . . . . 6 (((𝜑𝑄𝐴) ∧ 𝑥𝑉) → ((𝐼𝑄) = (𝑁‘{𝑥}) → (𝑥0 ∧ (𝐼𝑄) = (𝑁‘{𝑥}))))
8887reximdva 3274 . . . . 5 ((𝜑𝑄𝐴) → (∃𝑥𝑉 (𝐼𝑄) = (𝑁‘{𝑥}) → ∃𝑥𝑉 (𝑥0 ∧ (𝐼𝑄) = (𝑁‘{𝑥}))))
8951, 88mpd 15 . . . 4 ((𝜑𝑄𝐴) → ∃𝑥𝑉 (𝑥0 ∧ (𝐼𝑄) = (𝑁‘{𝑥})))
9089ex 415 . . 3 (𝜑 → (𝑄𝐴 → ∃𝑥𝑉 (𝑥0 ∧ (𝐼𝑄) = (𝑁‘{𝑥}))))
911ad2antrr 724 . . . . . . . 8 (((𝜑𝑥𝑉) ∧ (𝑥0 ∧ (𝐼𝑄) = (𝑁‘{𝑥}))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
9274ad2antrr 724 . . . . . . . 8 (((𝜑𝑥𝑉) ∧ (𝑥0 ∧ (𝐼𝑄) = (𝑁‘{𝑥}))) → 𝑄𝐵)
935, 8, 12dihcnvid1 38407 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑄𝐵) → (𝐼‘(𝐼𝑄)) = 𝑄)
9491, 92, 93syl2anc 586 . . . . . . 7 (((𝜑𝑥𝑉) ∧ (𝑥0 ∧ (𝐼𝑄) = (𝑁‘{𝑥}))) → (𝐼‘(𝐼𝑄)) = 𝑄)
95 fveq2 6669 . . . . . . . 8 ((𝐼𝑄) = (𝑁‘{𝑥}) → (𝐼‘(𝐼𝑄)) = (𝐼‘(𝑁‘{𝑥})))
9695ad2antll 727 . . . . . . 7 (((𝜑𝑥𝑉) ∧ (𝑥0 ∧ (𝐼𝑄) = (𝑁‘{𝑥}))) → (𝐼‘(𝐼𝑄)) = (𝐼‘(𝑁‘{𝑥})))
9794, 96eqtr3d 2858 . . . . . 6 (((𝜑𝑥𝑉) ∧ (𝑥0 ∧ (𝐼𝑄) = (𝑁‘{𝑥}))) → 𝑄 = (𝐼‘(𝑁‘{𝑥})))
9864ad2antrr 724 . . . . . . . 8 (((𝜑𝑥𝑉) ∧ (𝑥0 ∧ (𝐼𝑄) = (𝑁‘{𝑥}))) → 𝑈 ∈ LMod)
99 simplr 767 . . . . . . . 8 (((𝜑𝑥𝑉) ∧ (𝑥0 ∧ (𝐼𝑄) = (𝑁‘{𝑥}))) → 𝑥𝑉)
100 simprl 769 . . . . . . . 8 (((𝜑𝑥𝑉) ∧ (𝑥0 ∧ (𝐼𝑄) = (𝑁‘{𝑥}))) → 𝑥0 )
101 eqid 2821 . . . . . . . . 9 (LSAtoms‘𝑈) = (LSAtoms‘𝑈)
10221, 13, 65, 101lsatlspsn2 36127 . . . . . . . 8 ((𝑈 ∈ LMod ∧ 𝑥𝑉𝑥0 ) → (𝑁‘{𝑥}) ∈ (LSAtoms‘𝑈))
10398, 99, 100, 102syl3anc 1367 . . . . . . 7 (((𝜑𝑥𝑉) ∧ (𝑥0 ∧ (𝐼𝑄) = (𝑁‘{𝑥}))) → (𝑁‘{𝑥}) ∈ (LSAtoms‘𝑈))
1047, 8, 11, 12, 101dihlatat 38472 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑁‘{𝑥}) ∈ (LSAtoms‘𝑈)) → (𝐼‘(𝑁‘{𝑥})) ∈ 𝐴)
10591, 103, 104syl2anc 586 . . . . . 6 (((𝜑𝑥𝑉) ∧ (𝑥0 ∧ (𝐼𝑄) = (𝑁‘{𝑥}))) → (𝐼‘(𝑁‘{𝑥})) ∈ 𝐴)
10697, 105eqeltrd 2913 . . . . 5 (((𝜑𝑥𝑉) ∧ (𝑥0 ∧ (𝐼𝑄) = (𝑁‘{𝑥}))) → 𝑄𝐴)
107106ex 415 . . . 4 ((𝜑𝑥𝑉) → ((𝑥0 ∧ (𝐼𝑄) = (𝑁‘{𝑥})) → 𝑄𝐴))
108107rexlimdva 3284 . . 3 (𝜑 → (∃𝑥𝑉 (𝑥0 ∧ (𝐼𝑄) = (𝑁‘{𝑥})) → 𝑄𝐴))
10990, 108impbid 214 . 2 (𝜑 → (𝑄𝐴 ↔ ∃𝑥𝑉 (𝑥0 ∧ (𝐼𝑄) = (𝑁‘{𝑥}))))
110 rexdifsn 4726 . 2 (∃𝑥 ∈ (𝑉 ∖ { 0 })(𝐼𝑄) = (𝑁‘{𝑥}) ↔ ∃𝑥𝑉 (𝑥0 ∧ (𝐼𝑄) = (𝑁‘{𝑥})))
111109, 110syl6bbr 291 1 (𝜑 → (𝑄𝐴 ↔ ∃𝑥 ∈ (𝑉 ∖ { 0 })(𝐼𝑄) = (𝑁‘{𝑥})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wne 3016  wrex 3139  cdif 3932  {csn 4566  cop 4572   class class class wbr 5065  cmpt 5145   I cid 5458  ccnv 5553  cres 5556  cfv 6354  crio 7112  Basecbs 16482  lecple 16571  occoc 16572  0gc0g 16712  0.cp0 17646  LModclmod 19633  LSpanclspn 19742  LSAtomsclsa 36109  OPcops 36307  Atomscatm 36398  AtLatcal 36399  HLchlt 36485  LHypclh 37119  LTrncltrn 37236  TEndoctendo 37887  DVecHcdvh 38213  DIsoHcdih 38363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-riotaBAD 36088
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-iin 4921  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-tpos 7891  df-undef 7938  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-oadd 8105  df-er 8288  df-map 8407  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-nn 11638  df-2 11699  df-3 11700  df-4 11701  df-5 11702  df-6 11703  df-n0 11897  df-z 11981  df-uz 12243  df-fz 12892  df-struct 16484  df-ndx 16485  df-slot 16486  df-base 16488  df-sets 16489  df-ress 16490  df-plusg 16577  df-mulr 16578  df-sca 16580  df-vsca 16581  df-0g 16714  df-proset 17537  df-poset 17555  df-plt 17567  df-lub 17583  df-glb 17584  df-join 17585  df-meet 17586  df-p0 17648  df-p1 17649  df-lat 17655  df-clat 17717  df-mgm 17851  df-sgrp 17900  df-mnd 17911  df-submnd 17956  df-grp 18105  df-minusg 18106  df-sbg 18107  df-subg 18275  df-cntz 18446  df-lsm 18760  df-cmn 18907  df-abl 18908  df-mgp 19239  df-ur 19251  df-ring 19298  df-oppr 19372  df-dvdsr 19390  df-unit 19391  df-invr 19421  df-dvr 19432  df-drng 19503  df-lmod 19635  df-lss 19703  df-lsp 19743  df-lvec 19874  df-lsatoms 36111  df-oposet 36311  df-ol 36313  df-oml 36314  df-covers 36401  df-ats 36402  df-atl 36433  df-cvlat 36457  df-hlat 36486  df-llines 36633  df-lplanes 36634  df-lvols 36635  df-lines 36636  df-psubsp 36638  df-pmap 36639  df-padd 36931  df-lhyp 37123  df-laut 37124  df-ldil 37239  df-ltrn 37240  df-trl 37294  df-tendo 37890  df-edring 37892  df-disoa 38164  df-dvech 38214  df-dib 38274  df-dic 38308  df-dih 38364
This theorem is referenced by:  dihatexv2  38474
  Copyright terms: Public domain W3C validator