Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihffval Structured version   Visualization version   GIF version

Theorem dihffval 37019
Description: The isomorphism H for a lattice 𝐾. Definition of isomorphism map in [Crawley] p. 122 line 3. (Contributed by NM, 28-Jan-2014.)
Hypotheses
Ref Expression
dihval.b 𝐵 = (Base‘𝐾)
dihval.l = (le‘𝐾)
dihval.j = (join‘𝐾)
dihval.m = (meet‘𝐾)
dihval.a 𝐴 = (Atoms‘𝐾)
dihval.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
dihffval (𝐾𝑉 → (DIsoH‘𝐾) = (𝑤𝐻 ↦ (𝑥𝐵 ↦ if(𝑥 𝑤, (((DIsoB‘𝐾)‘𝑤)‘𝑥), (𝑢 ∈ (LSubSp‘((DVecH‘𝐾)‘𝑤))∀𝑞𝐴 ((¬ 𝑞 𝑤 ∧ (𝑞 (𝑥 𝑤)) = 𝑥) → 𝑢 = ((((DIsoC‘𝐾)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑤))(((DIsoB‘𝐾)‘𝑤)‘(𝑥 𝑤)))))))))
Distinct variable groups:   𝐴,𝑞   𝑤,𝐻   𝑢,𝑞,𝑤,𝑥,𝐾
Allowed substitution hints:   𝐴(𝑥,𝑤,𝑢)   𝐵(𝑥,𝑤,𝑢,𝑞)   𝐻(𝑥,𝑢,𝑞)   (𝑥,𝑤,𝑢,𝑞)   (𝑥,𝑤,𝑢,𝑞)   (𝑥,𝑤,𝑢,𝑞)   𝑉(𝑥,𝑤,𝑢,𝑞)

Proof of Theorem dihffval
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elex 3350 . 2 (𝐾𝑉𝐾 ∈ V)
2 fveq2 6350 . . . . 5 (𝑘 = 𝐾 → (LHyp‘𝑘) = (LHyp‘𝐾))
3 dihval.h . . . . 5 𝐻 = (LHyp‘𝐾)
42, 3syl6eqr 2810 . . . 4 (𝑘 = 𝐾 → (LHyp‘𝑘) = 𝐻)
5 fveq2 6350 . . . . . 6 (𝑘 = 𝐾 → (Base‘𝑘) = (Base‘𝐾))
6 dihval.b . . . . . 6 𝐵 = (Base‘𝐾)
75, 6syl6eqr 2810 . . . . 5 (𝑘 = 𝐾 → (Base‘𝑘) = 𝐵)
8 fveq2 6350 . . . . . . . 8 (𝑘 = 𝐾 → (le‘𝑘) = (le‘𝐾))
9 dihval.l . . . . . . . 8 = (le‘𝐾)
108, 9syl6eqr 2810 . . . . . . 7 (𝑘 = 𝐾 → (le‘𝑘) = )
1110breqd 4813 . . . . . 6 (𝑘 = 𝐾 → (𝑥(le‘𝑘)𝑤𝑥 𝑤))
12 fveq2 6350 . . . . . . . 8 (𝑘 = 𝐾 → (DIsoB‘𝑘) = (DIsoB‘𝐾))
1312fveq1d 6352 . . . . . . 7 (𝑘 = 𝐾 → ((DIsoB‘𝑘)‘𝑤) = ((DIsoB‘𝐾)‘𝑤))
1413fveq1d 6352 . . . . . 6 (𝑘 = 𝐾 → (((DIsoB‘𝑘)‘𝑤)‘𝑥) = (((DIsoB‘𝐾)‘𝑤)‘𝑥))
15 fveq2 6350 . . . . . . . . 9 (𝑘 = 𝐾 → (DVecH‘𝑘) = (DVecH‘𝐾))
1615fveq1d 6352 . . . . . . . 8 (𝑘 = 𝐾 → ((DVecH‘𝑘)‘𝑤) = ((DVecH‘𝐾)‘𝑤))
1716fveq2d 6354 . . . . . . 7 (𝑘 = 𝐾 → (LSubSp‘((DVecH‘𝑘)‘𝑤)) = (LSubSp‘((DVecH‘𝐾)‘𝑤)))
18 fveq2 6350 . . . . . . . . 9 (𝑘 = 𝐾 → (Atoms‘𝑘) = (Atoms‘𝐾))
19 dihval.a . . . . . . . . 9 𝐴 = (Atoms‘𝐾)
2018, 19syl6eqr 2810 . . . . . . . 8 (𝑘 = 𝐾 → (Atoms‘𝑘) = 𝐴)
2110breqd 4813 . . . . . . . . . . 11 (𝑘 = 𝐾 → (𝑞(le‘𝑘)𝑤𝑞 𝑤))
2221notbid 307 . . . . . . . . . 10 (𝑘 = 𝐾 → (¬ 𝑞(le‘𝑘)𝑤 ↔ ¬ 𝑞 𝑤))
23 fveq2 6350 . . . . . . . . . . . . 13 (𝑘 = 𝐾 → (join‘𝑘) = (join‘𝐾))
24 dihval.j . . . . . . . . . . . . 13 = (join‘𝐾)
2523, 24syl6eqr 2810 . . . . . . . . . . . 12 (𝑘 = 𝐾 → (join‘𝑘) = )
26 eqidd 2759 . . . . . . . . . . . 12 (𝑘 = 𝐾𝑞 = 𝑞)
27 fveq2 6350 . . . . . . . . . . . . . 14 (𝑘 = 𝐾 → (meet‘𝑘) = (meet‘𝐾))
28 dihval.m . . . . . . . . . . . . . 14 = (meet‘𝐾)
2927, 28syl6eqr 2810 . . . . . . . . . . . . 13 (𝑘 = 𝐾 → (meet‘𝑘) = )
3029oveqd 6828 . . . . . . . . . . . 12 (𝑘 = 𝐾 → (𝑥(meet‘𝑘)𝑤) = (𝑥 𝑤))
3125, 26, 30oveq123d 6832 . . . . . . . . . . 11 (𝑘 = 𝐾 → (𝑞(join‘𝑘)(𝑥(meet‘𝑘)𝑤)) = (𝑞 (𝑥 𝑤)))
3231eqeq1d 2760 . . . . . . . . . 10 (𝑘 = 𝐾 → ((𝑞(join‘𝑘)(𝑥(meet‘𝑘)𝑤)) = 𝑥 ↔ (𝑞 (𝑥 𝑤)) = 𝑥))
3322, 32anbi12d 749 . . . . . . . . 9 (𝑘 = 𝐾 → ((¬ 𝑞(le‘𝑘)𝑤 ∧ (𝑞(join‘𝑘)(𝑥(meet‘𝑘)𝑤)) = 𝑥) ↔ (¬ 𝑞 𝑤 ∧ (𝑞 (𝑥 𝑤)) = 𝑥)))
3416fveq2d 6354 . . . . . . . . . . 11 (𝑘 = 𝐾 → (LSSum‘((DVecH‘𝑘)‘𝑤)) = (LSSum‘((DVecH‘𝐾)‘𝑤)))
35 fveq2 6350 . . . . . . . . . . . . 13 (𝑘 = 𝐾 → (DIsoC‘𝑘) = (DIsoC‘𝐾))
3635fveq1d 6352 . . . . . . . . . . . 12 (𝑘 = 𝐾 → ((DIsoC‘𝑘)‘𝑤) = ((DIsoC‘𝐾)‘𝑤))
3736fveq1d 6352 . . . . . . . . . . 11 (𝑘 = 𝐾 → (((DIsoC‘𝑘)‘𝑤)‘𝑞) = (((DIsoC‘𝐾)‘𝑤)‘𝑞))
3813, 30fveq12d 6356 . . . . . . . . . . 11 (𝑘 = 𝐾 → (((DIsoB‘𝑘)‘𝑤)‘(𝑥(meet‘𝑘)𝑤)) = (((DIsoB‘𝐾)‘𝑤)‘(𝑥 𝑤)))
3934, 37, 38oveq123d 6832 . . . . . . . . . 10 (𝑘 = 𝐾 → ((((DIsoC‘𝑘)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝑘)‘𝑤))(((DIsoB‘𝑘)‘𝑤)‘(𝑥(meet‘𝑘)𝑤))) = ((((DIsoC‘𝐾)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑤))(((DIsoB‘𝐾)‘𝑤)‘(𝑥 𝑤))))
4039eqeq2d 2768 . . . . . . . . 9 (𝑘 = 𝐾 → (𝑢 = ((((DIsoC‘𝑘)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝑘)‘𝑤))(((DIsoB‘𝑘)‘𝑤)‘(𝑥(meet‘𝑘)𝑤))) ↔ 𝑢 = ((((DIsoC‘𝐾)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑤))(((DIsoB‘𝐾)‘𝑤)‘(𝑥 𝑤)))))
4133, 40imbi12d 333 . . . . . . . 8 (𝑘 = 𝐾 → (((¬ 𝑞(le‘𝑘)𝑤 ∧ (𝑞(join‘𝑘)(𝑥(meet‘𝑘)𝑤)) = 𝑥) → 𝑢 = ((((DIsoC‘𝑘)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝑘)‘𝑤))(((DIsoB‘𝑘)‘𝑤)‘(𝑥(meet‘𝑘)𝑤)))) ↔ ((¬ 𝑞 𝑤 ∧ (𝑞 (𝑥 𝑤)) = 𝑥) → 𝑢 = ((((DIsoC‘𝐾)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑤))(((DIsoB‘𝐾)‘𝑤)‘(𝑥 𝑤))))))
4220, 41raleqbidv 3289 . . . . . . 7 (𝑘 = 𝐾 → (∀𝑞 ∈ (Atoms‘𝑘)((¬ 𝑞(le‘𝑘)𝑤 ∧ (𝑞(join‘𝑘)(𝑥(meet‘𝑘)𝑤)) = 𝑥) → 𝑢 = ((((DIsoC‘𝑘)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝑘)‘𝑤))(((DIsoB‘𝑘)‘𝑤)‘(𝑥(meet‘𝑘)𝑤)))) ↔ ∀𝑞𝐴 ((¬ 𝑞 𝑤 ∧ (𝑞 (𝑥 𝑤)) = 𝑥) → 𝑢 = ((((DIsoC‘𝐾)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑤))(((DIsoB‘𝐾)‘𝑤)‘(𝑥 𝑤))))))
4317, 42riotaeqbidv 6775 . . . . . 6 (𝑘 = 𝐾 → (𝑢 ∈ (LSubSp‘((DVecH‘𝑘)‘𝑤))∀𝑞 ∈ (Atoms‘𝑘)((¬ 𝑞(le‘𝑘)𝑤 ∧ (𝑞(join‘𝑘)(𝑥(meet‘𝑘)𝑤)) = 𝑥) → 𝑢 = ((((DIsoC‘𝑘)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝑘)‘𝑤))(((DIsoB‘𝑘)‘𝑤)‘(𝑥(meet‘𝑘)𝑤))))) = (𝑢 ∈ (LSubSp‘((DVecH‘𝐾)‘𝑤))∀𝑞𝐴 ((¬ 𝑞 𝑤 ∧ (𝑞 (𝑥 𝑤)) = 𝑥) → 𝑢 = ((((DIsoC‘𝐾)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑤))(((DIsoB‘𝐾)‘𝑤)‘(𝑥 𝑤))))))
4411, 14, 43ifbieq12d 4255 . . . . 5 (𝑘 = 𝐾 → if(𝑥(le‘𝑘)𝑤, (((DIsoB‘𝑘)‘𝑤)‘𝑥), (𝑢 ∈ (LSubSp‘((DVecH‘𝑘)‘𝑤))∀𝑞 ∈ (Atoms‘𝑘)((¬ 𝑞(le‘𝑘)𝑤 ∧ (𝑞(join‘𝑘)(𝑥(meet‘𝑘)𝑤)) = 𝑥) → 𝑢 = ((((DIsoC‘𝑘)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝑘)‘𝑤))(((DIsoB‘𝑘)‘𝑤)‘(𝑥(meet‘𝑘)𝑤)))))) = if(𝑥 𝑤, (((DIsoB‘𝐾)‘𝑤)‘𝑥), (𝑢 ∈ (LSubSp‘((DVecH‘𝐾)‘𝑤))∀𝑞𝐴 ((¬ 𝑞 𝑤 ∧ (𝑞 (𝑥 𝑤)) = 𝑥) → 𝑢 = ((((DIsoC‘𝐾)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑤))(((DIsoB‘𝐾)‘𝑤)‘(𝑥 𝑤)))))))
457, 44mpteq12dv 4883 . . . 4 (𝑘 = 𝐾 → (𝑥 ∈ (Base‘𝑘) ↦ if(𝑥(le‘𝑘)𝑤, (((DIsoB‘𝑘)‘𝑤)‘𝑥), (𝑢 ∈ (LSubSp‘((DVecH‘𝑘)‘𝑤))∀𝑞 ∈ (Atoms‘𝑘)((¬ 𝑞(le‘𝑘)𝑤 ∧ (𝑞(join‘𝑘)(𝑥(meet‘𝑘)𝑤)) = 𝑥) → 𝑢 = ((((DIsoC‘𝑘)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝑘)‘𝑤))(((DIsoB‘𝑘)‘𝑤)‘(𝑥(meet‘𝑘)𝑤))))))) = (𝑥𝐵 ↦ if(𝑥 𝑤, (((DIsoB‘𝐾)‘𝑤)‘𝑥), (𝑢 ∈ (LSubSp‘((DVecH‘𝐾)‘𝑤))∀𝑞𝐴 ((¬ 𝑞 𝑤 ∧ (𝑞 (𝑥 𝑤)) = 𝑥) → 𝑢 = ((((DIsoC‘𝐾)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑤))(((DIsoB‘𝐾)‘𝑤)‘(𝑥 𝑤))))))))
464, 45mpteq12dv 4883 . . 3 (𝑘 = 𝐾 → (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ (Base‘𝑘) ↦ if(𝑥(le‘𝑘)𝑤, (((DIsoB‘𝑘)‘𝑤)‘𝑥), (𝑢 ∈ (LSubSp‘((DVecH‘𝑘)‘𝑤))∀𝑞 ∈ (Atoms‘𝑘)((¬ 𝑞(le‘𝑘)𝑤 ∧ (𝑞(join‘𝑘)(𝑥(meet‘𝑘)𝑤)) = 𝑥) → 𝑢 = ((((DIsoC‘𝑘)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝑘)‘𝑤))(((DIsoB‘𝑘)‘𝑤)‘(𝑥(meet‘𝑘)𝑤)))))))) = (𝑤𝐻 ↦ (𝑥𝐵 ↦ if(𝑥 𝑤, (((DIsoB‘𝐾)‘𝑤)‘𝑥), (𝑢 ∈ (LSubSp‘((DVecH‘𝐾)‘𝑤))∀𝑞𝐴 ((¬ 𝑞 𝑤 ∧ (𝑞 (𝑥 𝑤)) = 𝑥) → 𝑢 = ((((DIsoC‘𝐾)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑤))(((DIsoB‘𝐾)‘𝑤)‘(𝑥 𝑤)))))))))
47 df-dih 37018 . . 3 DIsoH = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ (Base‘𝑘) ↦ if(𝑥(le‘𝑘)𝑤, (((DIsoB‘𝑘)‘𝑤)‘𝑥), (𝑢 ∈ (LSubSp‘((DVecH‘𝑘)‘𝑤))∀𝑞 ∈ (Atoms‘𝑘)((¬ 𝑞(le‘𝑘)𝑤 ∧ (𝑞(join‘𝑘)(𝑥(meet‘𝑘)𝑤)) = 𝑥) → 𝑢 = ((((DIsoC‘𝑘)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝑘)‘𝑤))(((DIsoB‘𝑘)‘𝑤)‘(𝑥(meet‘𝑘)𝑤)))))))))
48 fvex 6360 . . . . 5 (LHyp‘𝐾) ∈ V
493, 48eqeltri 2833 . . . 4 𝐻 ∈ V
5049mptex 6648 . . 3 (𝑤𝐻 ↦ (𝑥𝐵 ↦ if(𝑥 𝑤, (((DIsoB‘𝐾)‘𝑤)‘𝑥), (𝑢 ∈ (LSubSp‘((DVecH‘𝐾)‘𝑤))∀𝑞𝐴 ((¬ 𝑞 𝑤 ∧ (𝑞 (𝑥 𝑤)) = 𝑥) → 𝑢 = ((((DIsoC‘𝐾)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑤))(((DIsoB‘𝐾)‘𝑤)‘(𝑥 𝑤)))))))) ∈ V
5146, 47, 50fvmpt 6442 . 2 (𝐾 ∈ V → (DIsoH‘𝐾) = (𝑤𝐻 ↦ (𝑥𝐵 ↦ if(𝑥 𝑤, (((DIsoB‘𝐾)‘𝑤)‘𝑥), (𝑢 ∈ (LSubSp‘((DVecH‘𝐾)‘𝑤))∀𝑞𝐴 ((¬ 𝑞 𝑤 ∧ (𝑞 (𝑥 𝑤)) = 𝑥) → 𝑢 = ((((DIsoC‘𝐾)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑤))(((DIsoB‘𝐾)‘𝑤)‘(𝑥 𝑤)))))))))
521, 51syl 17 1 (𝐾𝑉 → (DIsoH‘𝐾) = (𝑤𝐻 ↦ (𝑥𝐵 ↦ if(𝑥 𝑤, (((DIsoB‘𝐾)‘𝑤)‘𝑥), (𝑢 ∈ (LSubSp‘((DVecH‘𝐾)‘𝑤))∀𝑞𝐴 ((¬ 𝑞 𝑤 ∧ (𝑞 (𝑥 𝑤)) = 𝑥) → 𝑢 = ((((DIsoC‘𝐾)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑤))(((DIsoB‘𝐾)‘𝑤)‘(𝑥 𝑤)))))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1630  wcel 2137  wral 3048  Vcvv 3338  ifcif 4228   class class class wbr 4802  cmpt 4879  cfv 6047  crio 6771  (class class class)co 6811  Basecbs 16057  lecple 16148  joincjn 17143  meetcmee 17144  LSSumclsm 18247  LSubSpclss 19132  Atomscatm 35051  LHypclh 35771  DVecHcdvh 36867  DIsoBcdib 36927  DIsoCcdic 36961  DIsoHcdih 37017
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1986  ax-6 2052  ax-7 2088  ax-9 2146  ax-10 2166  ax-11 2181  ax-12 2194  ax-13 2389  ax-ext 2738  ax-rep 4921  ax-sep 4931  ax-nul 4939  ax-pr 5053
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2045  df-eu 2609  df-mo 2610  df-clab 2745  df-cleq 2751  df-clel 2754  df-nfc 2889  df-ne 2931  df-ral 3053  df-rex 3054  df-reu 3055  df-rab 3057  df-v 3340  df-sbc 3575  df-csb 3673  df-dif 3716  df-un 3718  df-in 3720  df-ss 3727  df-nul 4057  df-if 4229  df-sn 4320  df-pr 4322  df-op 4326  df-uni 4587  df-iun 4672  df-br 4803  df-opab 4863  df-mpt 4880  df-id 5172  df-xp 5270  df-rel 5271  df-cnv 5272  df-co 5273  df-dm 5274  df-rn 5275  df-res 5276  df-ima 5277  df-iota 6010  df-fun 6049  df-fn 6050  df-f 6051  df-f1 6052  df-fo 6053  df-f1o 6054  df-fv 6055  df-riota 6772  df-ov 6814  df-dih 37018
This theorem is referenced by:  dihfval  37020
  Copyright terms: Public domain W3C validator