Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihglblem2N Structured version   Visualization version   GIF version

Theorem dihglblem2N 36900
Description: The GLB of a set of lattice elements 𝑆 is the same as that of the set 𝑇 with elements of 𝑆 cut down to be under 𝑊. (Contributed by NM, 19-Mar-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dihglblem.b 𝐵 = (Base‘𝐾)
dihglblem.l = (le‘𝐾)
dihglblem.m = (meet‘𝐾)
dihglblem.g 𝐺 = (glb‘𝐾)
dihglblem.h 𝐻 = (LHyp‘𝐾)
dihglblem.t 𝑇 = {𝑢𝐵 ∣ ∃𝑣𝑆 𝑢 = (𝑣 𝑊)}
Assertion
Ref Expression
dihglblem2N (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) → (𝐺𝑆) = (𝐺𝑇))
Distinct variable groups:   𝑣,𝑢,   𝑢,𝐵   𝑢,𝑆,𝑣   𝑢,𝑊,𝑣
Allowed substitution hints:   𝐵(𝑣)   𝑇(𝑣,𝑢)   𝐺(𝑣,𝑢)   𝐻(𝑣,𝑢)   𝐾(𝑣,𝑢)   (𝑣,𝑢)

Proof of Theorem dihglblem2N
Dummy variables 𝑥 𝑦 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dihglblem.b . 2 𝐵 = (Base‘𝐾)
2 dihglblem.l . 2 = (le‘𝐾)
3 dihglblem.g . 2 𝐺 = (glb‘𝐾)
4 simpl1l 1132 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑥𝑆) → 𝐾 ∈ HL)
5 hllat 34968 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ Lat)
64, 5syl 17 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑥𝑆) → 𝐾 ∈ Lat)
7 simp1l 1105 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) → 𝐾 ∈ HL)
8 hlclat 34963 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ CLat)
97, 8syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) → 𝐾 ∈ CLat)
10 dihglblem.t . . . . . 6 𝑇 = {𝑢𝐵 ∣ ∃𝑣𝑆 𝑢 = (𝑣 𝑊)}
11 ssrab2 3720 . . . . . 6 {𝑢𝐵 ∣ ∃𝑣𝑆 𝑢 = (𝑣 𝑊)} ⊆ 𝐵
1210, 11eqsstri 3668 . . . . 5 𝑇𝐵
131, 3clatglbcl 17161 . . . . 5 ((𝐾 ∈ CLat ∧ 𝑇𝐵) → (𝐺𝑇) ∈ 𝐵)
149, 12, 13sylancl 695 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) → (𝐺𝑇) ∈ 𝐵)
1514adantr 480 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑥𝑆) → (𝐺𝑇) ∈ 𝐵)
16 simpl2 1085 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑥𝑆) → 𝑆𝐵)
17 simpr 476 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑥𝑆) → 𝑥𝑆)
1816, 17sseldd 3637 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑥𝑆) → 𝑥𝐵)
19 simpl1r 1133 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑥𝑆) → 𝑊𝐻)
20 dihglblem.h . . . . . 6 𝐻 = (LHyp‘𝐾)
211, 20lhpbase 35602 . . . . 5 (𝑊𝐻𝑊𝐵)
2219, 21syl 17 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑥𝑆) → 𝑊𝐵)
23 dihglblem.m . . . . 5 = (meet‘𝐾)
241, 23latmcl 17099 . . . 4 ((𝐾 ∈ Lat ∧ 𝑥𝐵𝑊𝐵) → (𝑥 𝑊) ∈ 𝐵)
256, 18, 22, 24syl3anc 1366 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑥𝑆) → (𝑥 𝑊) ∈ 𝐵)
264, 8syl 17 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑥𝑆) → 𝐾 ∈ CLat)
27 eqidd 2652 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑥𝑆) → (𝑥 𝑊) = (𝑥 𝑊))
28 oveq1 6697 . . . . . . . . 9 (𝑣 = 𝑥 → (𝑣 𝑊) = (𝑥 𝑊))
2928eqeq2d 2661 . . . . . . . 8 (𝑣 = 𝑥 → ((𝑥 𝑊) = (𝑣 𝑊) ↔ (𝑥 𝑊) = (𝑥 𝑊)))
3029rspcev 3340 . . . . . . 7 ((𝑥𝑆 ∧ (𝑥 𝑊) = (𝑥 𝑊)) → ∃𝑣𝑆 (𝑥 𝑊) = (𝑣 𝑊))
3117, 27, 30syl2anc 694 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑥𝑆) → ∃𝑣𝑆 (𝑥 𝑊) = (𝑣 𝑊))
32 eqeq1 2655 . . . . . . . 8 (𝑢 = (𝑥 𝑊) → (𝑢 = (𝑣 𝑊) ↔ (𝑥 𝑊) = (𝑣 𝑊)))
3332rexbidv 3081 . . . . . . 7 (𝑢 = (𝑥 𝑊) → (∃𝑣𝑆 𝑢 = (𝑣 𝑊) ↔ ∃𝑣𝑆 (𝑥 𝑊) = (𝑣 𝑊)))
3433elrab 3396 . . . . . 6 ((𝑥 𝑊) ∈ {𝑢𝐵 ∣ ∃𝑣𝑆 𝑢 = (𝑣 𝑊)} ↔ ((𝑥 𝑊) ∈ 𝐵 ∧ ∃𝑣𝑆 (𝑥 𝑊) = (𝑣 𝑊)))
3525, 31, 34sylanbrc 699 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑥𝑆) → (𝑥 𝑊) ∈ {𝑢𝐵 ∣ ∃𝑣𝑆 𝑢 = (𝑣 𝑊)})
3635, 10syl6eleqr 2741 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑥𝑆) → (𝑥 𝑊) ∈ 𝑇)
371, 2, 3clatglble 17172 . . . . 5 ((𝐾 ∈ CLat ∧ 𝑇𝐵 ∧ (𝑥 𝑊) ∈ 𝑇) → (𝐺𝑇) (𝑥 𝑊))
3812, 37mp3an2 1452 . . . 4 ((𝐾 ∈ CLat ∧ (𝑥 𝑊) ∈ 𝑇) → (𝐺𝑇) (𝑥 𝑊))
3926, 36, 38syl2anc 694 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑥𝑆) → (𝐺𝑇) (𝑥 𝑊))
401, 2, 23latmle1 17123 . . . 4 ((𝐾 ∈ Lat ∧ 𝑥𝐵𝑊𝐵) → (𝑥 𝑊) 𝑥)
416, 18, 22, 40syl3anc 1366 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑥𝑆) → (𝑥 𝑊) 𝑥)
421, 2, 6, 15, 25, 18, 39, 41lattrd 17105 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑥𝑆) → (𝐺𝑇) 𝑥)
43 eqeq1 2655 . . . . . . . 8 (𝑢 = 𝑤 → (𝑢 = (𝑣 𝑊) ↔ 𝑤 = (𝑣 𝑊)))
4443rexbidv 3081 . . . . . . 7 (𝑢 = 𝑤 → (∃𝑣𝑆 𝑢 = (𝑣 𝑊) ↔ ∃𝑣𝑆 𝑤 = (𝑣 𝑊)))
45 oveq1 6697 . . . . . . . . 9 (𝑣 = 𝑦 → (𝑣 𝑊) = (𝑦 𝑊))
4645eqeq2d 2661 . . . . . . . 8 (𝑣 = 𝑦 → (𝑤 = (𝑣 𝑊) ↔ 𝑤 = (𝑦 𝑊)))
4746cbvrexv 3202 . . . . . . 7 (∃𝑣𝑆 𝑤 = (𝑣 𝑊) ↔ ∃𝑦𝑆 𝑤 = (𝑦 𝑊))
4844, 47syl6bb 276 . . . . . 6 (𝑢 = 𝑤 → (∃𝑣𝑆 𝑢 = (𝑣 𝑊) ↔ ∃𝑦𝑆 𝑤 = (𝑦 𝑊)))
4948, 10elrab2 3399 . . . . 5 (𝑤𝑇 ↔ (𝑤𝐵 ∧ ∃𝑦𝑆 𝑤 = (𝑦 𝑊)))
50 simp3 1083 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) ∧ 𝑤𝐵𝑦𝑆) → 𝑦𝑆)
51 simp13 1113 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) ∧ 𝑤𝐵𝑦𝑆) → ∀𝑥𝑆 𝑧 𝑥)
52 breq2 4689 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (𝑧 𝑥𝑧 𝑦))
5352rspcva 3338 . . . . . . . . . . 11 ((𝑦𝑆 ∧ ∀𝑥𝑆 𝑧 𝑥) → 𝑧 𝑦)
5450, 51, 53syl2anc 694 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) ∧ 𝑤𝐵𝑦𝑆) → 𝑧 𝑦)
55 simp11l 1192 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) → 𝐾 ∈ HL)
56553ad2ant1 1102 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) ∧ 𝑤𝐵𝑦𝑆) → 𝐾 ∈ HL)
5756, 5syl 17 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) ∧ 𝑤𝐵𝑦𝑆) → 𝐾 ∈ Lat)
58 simp12 1112 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) ∧ 𝑤𝐵𝑦𝑆) → 𝑧𝐵)
5956, 8syl 17 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) ∧ 𝑤𝐵𝑦𝑆) → 𝐾 ∈ CLat)
60 simp112 1211 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) ∧ 𝑤𝐵𝑦𝑆) → 𝑆𝐵)
611, 3clatglbcl 17161 . . . . . . . . . . . 12 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → (𝐺𝑆) ∈ 𝐵)
6259, 60, 61syl2anc 694 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) ∧ 𝑤𝐵𝑦𝑆) → (𝐺𝑆) ∈ 𝐵)
63 simp11r 1193 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) → 𝑊𝐻)
64633ad2ant1 1102 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) ∧ 𝑤𝐵𝑦𝑆) → 𝑊𝐻)
6564, 21syl 17 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) ∧ 𝑤𝐵𝑦𝑆) → 𝑊𝐵)
661, 2, 3clatleglb 17173 . . . . . . . . . . . . 13 ((𝐾 ∈ CLat ∧ 𝑧𝐵𝑆𝐵) → (𝑧 (𝐺𝑆) ↔ ∀𝑥𝑆 𝑧 𝑥))
6759, 58, 60, 66syl3anc 1366 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) ∧ 𝑤𝐵𝑦𝑆) → (𝑧 (𝐺𝑆) ↔ ∀𝑥𝑆 𝑧 𝑥))
6851, 67mpbird 247 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) ∧ 𝑤𝐵𝑦𝑆) → 𝑧 (𝐺𝑆))
69 simp113 1212 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) ∧ 𝑤𝐵𝑦𝑆) → (𝐺𝑆) 𝑊)
701, 2, 57, 58, 62, 65, 68, 69lattrd 17105 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) ∧ 𝑤𝐵𝑦𝑆) → 𝑧 𝑊)
7160, 50sseldd 3637 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) ∧ 𝑤𝐵𝑦𝑆) → 𝑦𝐵)
721, 2, 23latlem12 17125 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ (𝑧𝐵𝑦𝐵𝑊𝐵)) → ((𝑧 𝑦𝑧 𝑊) ↔ 𝑧 (𝑦 𝑊)))
7357, 58, 71, 65, 72syl13anc 1368 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) ∧ 𝑤𝐵𝑦𝑆) → ((𝑧 𝑦𝑧 𝑊) ↔ 𝑧 (𝑦 𝑊)))
7454, 70, 73mpbi2and 976 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) ∧ 𝑤𝐵𝑦𝑆) → 𝑧 (𝑦 𝑊))
75743expia 1286 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) ∧ 𝑤𝐵) → (𝑦𝑆𝑧 (𝑦 𝑊)))
76 breq2 4689 . . . . . . . . 9 (𝑤 = (𝑦 𝑊) → (𝑧 𝑤𝑧 (𝑦 𝑊)))
7776biimprcd 240 . . . . . . . 8 (𝑧 (𝑦 𝑊) → (𝑤 = (𝑦 𝑊) → 𝑧 𝑤))
7875, 77syl6 35 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) ∧ 𝑤𝐵) → (𝑦𝑆 → (𝑤 = (𝑦 𝑊) → 𝑧 𝑤)))
7978rexlimdv 3059 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) ∧ 𝑤𝐵) → (∃𝑦𝑆 𝑤 = (𝑦 𝑊) → 𝑧 𝑤))
8079expimpd 628 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) → ((𝑤𝐵 ∧ ∃𝑦𝑆 𝑤 = (𝑦 𝑊)) → 𝑧 𝑤))
8149, 80syl5bi 232 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) → (𝑤𝑇𝑧 𝑤))
8281ralrimiv 2994 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) → ∀𝑤𝑇 𝑧 𝑤)
8355, 8syl 17 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) → 𝐾 ∈ CLat)
84 simp2 1082 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) → 𝑧𝐵)
851, 2, 3clatleglb 17173 . . . . 5 ((𝐾 ∈ CLat ∧ 𝑧𝐵𝑇𝐵) → (𝑧 (𝐺𝑇) ↔ ∀𝑤𝑇 𝑧 𝑤))
8612, 85mp3an3 1453 . . . 4 ((𝐾 ∈ CLat ∧ 𝑧𝐵) → (𝑧 (𝐺𝑇) ↔ ∀𝑤𝑇 𝑧 𝑤))
8783, 84, 86syl2anc 694 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) → (𝑧 (𝐺𝑇) ↔ ∀𝑤𝑇 𝑧 𝑤))
8882, 87mpbird 247 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) → 𝑧 (𝐺𝑇))
89 simp2 1082 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) → 𝑆𝐵)
901, 2, 3, 42, 88, 9, 89, 14isglbd 17164 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) → (𝐺𝑆) = (𝐺𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  wral 2941  wrex 2942  {crab 2945  wss 3607   class class class wbr 4685  cfv 5926  (class class class)co 6690  Basecbs 15904  lecple 15995  glbcglb 16990  meetcmee 16992  Latclat 17092  CLatccla 17154  HLchlt 34955  LHypclh 35588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-poset 16993  df-lub 17021  df-glb 17022  df-join 17023  df-meet 17024  df-lat 17093  df-clat 17155  df-atl 34903  df-cvlat 34927  df-hlat 34956  df-lhyp 35592
This theorem is referenced by:  dihglblem3N  36901  dihglblem3aN  36902
  Copyright terms: Public domain W3C validator