Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihglblem2aN Structured version   Visualization version   GIF version

Theorem dihglblem2aN 38309
Description: Lemma for isomorphism H of a GLB. (Contributed by NM, 19-Mar-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dihglblem.b 𝐵 = (Base‘𝐾)
dihglblem.l = (le‘𝐾)
dihglblem.m = (meet‘𝐾)
dihglblem.g 𝐺 = (glb‘𝐾)
dihglblem.h 𝐻 = (LHyp‘𝐾)
dihglblem.t 𝑇 = {𝑢𝐵 ∣ ∃𝑣𝑆 𝑢 = (𝑣 𝑊)}
Assertion
Ref Expression
dihglblem2aN (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) → 𝑇 ≠ ∅)
Distinct variable groups:   𝑣,𝑢,   𝑢,𝐵   𝑢,𝑆,𝑣   𝑢,𝑊,𝑣
Allowed substitution hints:   𝐵(𝑣)   𝑇(𝑣,𝑢)   𝐺(𝑣,𝑢)   𝐻(𝑣,𝑢)   𝐾(𝑣,𝑢)   (𝑣,𝑢)

Proof of Theorem dihglblem2aN
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dihglblem.t . . 3 𝑇 = {𝑢𝐵 ∣ ∃𝑣𝑆 𝑢 = (𝑣 𝑊)}
21a1i 11 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) → 𝑇 = {𝑢𝐵 ∣ ∃𝑣𝑆 𝑢 = (𝑣 𝑊)})
3 simprr 769 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) → 𝑆 ≠ ∅)
4 n0 4307 . . . 4 (𝑆 ≠ ∅ ↔ ∃𝑧 𝑧𝑆)
53, 4sylib 219 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) → ∃𝑧 𝑧𝑆)
6 hllat 36379 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ Lat)
76ad3antrrr 726 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑧𝑆) → 𝐾 ∈ Lat)
8 simplrl 773 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑧𝑆) → 𝑆𝐵)
9 simpr 485 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑧𝑆) → 𝑧𝑆)
108, 9sseldd 3965 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑧𝑆) → 𝑧𝐵)
11 dihglblem.b . . . . . . . 8 𝐵 = (Base‘𝐾)
12 dihglblem.h . . . . . . . 8 𝐻 = (LHyp‘𝐾)
1311, 12lhpbase 37014 . . . . . . 7 (𝑊𝐻𝑊𝐵)
1413ad3antlr 727 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑧𝑆) → 𝑊𝐵)
15 dihglblem.m . . . . . . 7 = (meet‘𝐾)
1611, 15latmcl 17650 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑧𝐵𝑊𝐵) → (𝑧 𝑊) ∈ 𝐵)
177, 10, 14, 16syl3anc 1363 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑧𝑆) → (𝑧 𝑊) ∈ 𝐵)
18 eqidd 2819 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑧𝑆) → (𝑧 𝑊) = (𝑧 𝑊))
19 oveq1 7152 . . . . . . 7 (𝑣 = 𝑧 → (𝑣 𝑊) = (𝑧 𝑊))
2019rspceeqv 3635 . . . . . 6 ((𝑧𝑆 ∧ (𝑧 𝑊) = (𝑧 𝑊)) → ∃𝑣𝑆 (𝑧 𝑊) = (𝑣 𝑊))
219, 18, 20syl2anc 584 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑧𝑆) → ∃𝑣𝑆 (𝑧 𝑊) = (𝑣 𝑊))
22 ovex 7178 . . . . . 6 (𝑧 𝑊) ∈ V
23 eleq1 2897 . . . . . . 7 (𝑤 = (𝑧 𝑊) → (𝑤 ∈ {𝑢𝐵 ∣ ∃𝑣𝑆 𝑢 = (𝑣 𝑊)} ↔ (𝑧 𝑊) ∈ {𝑢𝐵 ∣ ∃𝑣𝑆 𝑢 = (𝑣 𝑊)}))
24 eqeq1 2822 . . . . . . . . 9 (𝑢 = (𝑧 𝑊) → (𝑢 = (𝑣 𝑊) ↔ (𝑧 𝑊) = (𝑣 𝑊)))
2524rexbidv 3294 . . . . . . . 8 (𝑢 = (𝑧 𝑊) → (∃𝑣𝑆 𝑢 = (𝑣 𝑊) ↔ ∃𝑣𝑆 (𝑧 𝑊) = (𝑣 𝑊)))
2625elrab 3677 . . . . . . 7 ((𝑧 𝑊) ∈ {𝑢𝐵 ∣ ∃𝑣𝑆 𝑢 = (𝑣 𝑊)} ↔ ((𝑧 𝑊) ∈ 𝐵 ∧ ∃𝑣𝑆 (𝑧 𝑊) = (𝑣 𝑊)))
2723, 26syl6bb 288 . . . . . 6 (𝑤 = (𝑧 𝑊) → (𝑤 ∈ {𝑢𝐵 ∣ ∃𝑣𝑆 𝑢 = (𝑣 𝑊)} ↔ ((𝑧 𝑊) ∈ 𝐵 ∧ ∃𝑣𝑆 (𝑧 𝑊) = (𝑣 𝑊))))
2822, 27spcev 3604 . . . . 5 (((𝑧 𝑊) ∈ 𝐵 ∧ ∃𝑣𝑆 (𝑧 𝑊) = (𝑣 𝑊)) → ∃𝑤 𝑤 ∈ {𝑢𝐵 ∣ ∃𝑣𝑆 𝑢 = (𝑣 𝑊)})
2917, 21, 28syl2anc 584 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑧𝑆) → ∃𝑤 𝑤 ∈ {𝑢𝐵 ∣ ∃𝑣𝑆 𝑢 = (𝑣 𝑊)})
30 n0 4307 . . . 4 ({𝑢𝐵 ∣ ∃𝑣𝑆 𝑢 = (𝑣 𝑊)} ≠ ∅ ↔ ∃𝑤 𝑤 ∈ {𝑢𝐵 ∣ ∃𝑣𝑆 𝑢 = (𝑣 𝑊)})
3129, 30sylibr 235 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑧𝑆) → {𝑢𝐵 ∣ ∃𝑣𝑆 𝑢 = (𝑣 𝑊)} ≠ ∅)
325, 31exlimddv 1927 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) → {𝑢𝐵 ∣ ∃𝑣𝑆 𝑢 = (𝑣 𝑊)} ≠ ∅)
332, 32eqnetrd 3080 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) → 𝑇 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1528  wex 1771  wcel 2105  wne 3013  wrex 3136  {crab 3139  wss 3933  c0 4288  cfv 6348  (class class class)co 7145  Basecbs 16471  lecple 16560  glbcglb 17541  meetcmee 17543  Latclat 17643  HLchlt 36366  LHypclh 37000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-lub 17572  df-glb 17573  df-join 17574  df-meet 17575  df-lat 17644  df-atl 36314  df-cvlat 36338  df-hlat 36367  df-lhyp 37004
This theorem is referenced by:  dihglblem3N  38311
  Copyright terms: Public domain W3C validator