Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihglblem3N Structured version   Visualization version   GIF version

Theorem dihglblem3N 38435
Description: Isomorphism H of a lattice glb. (Contributed by NM, 20-Mar-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dihglblem.b 𝐵 = (Base‘𝐾)
dihglblem.l = (le‘𝐾)
dihglblem.m = (meet‘𝐾)
dihglblem.g 𝐺 = (glb‘𝐾)
dihglblem.h 𝐻 = (LHyp‘𝐾)
dihglblem.t 𝑇 = {𝑢𝐵 ∣ ∃𝑣𝑆 𝑢 = (𝑣 𝑊)}
dihglblem.i 𝐽 = ((DIsoB‘𝐾)‘𝑊)
dihglblem.ih 𝐼 = ((DIsoH‘𝐾)‘𝑊)
Assertion
Ref Expression
dihglblem3N (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) → (𝐼‘(𝐺𝑇)) = 𝑥𝑇 (𝐼𝑥))
Distinct variable groups:   𝑥,𝑢,𝑣,   𝑥,   𝑥,𝐵,𝑢   𝑥,𝐺   𝑥,𝐻   𝑥,𝐾   𝑥,𝑆,𝑢,𝑣   𝑥,𝑇   𝑥,𝑊,𝑢,𝑣   𝑢, ,𝑣   𝑣,𝐵   𝑢,𝐺,𝑣   𝑢,𝐻,𝑣   𝑢,𝐾,𝑣
Allowed substitution hints:   𝑇(𝑣,𝑢)   𝐼(𝑥,𝑣,𝑢)   𝐽(𝑥,𝑣,𝑢)

Proof of Theorem dihglblem3N
StepHypRef Expression
1 simp1 1132 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 dihglblem.t . . . . . 6 𝑇 = {𝑢𝐵 ∣ ∃𝑣𝑆 𝑢 = (𝑣 𝑊)}
3 simp11l 1280 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) ∧ 𝑢𝐵𝑣𝑆) → 𝐾 ∈ HL)
43hllatd 36504 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) ∧ 𝑢𝐵𝑣𝑆) → 𝐾 ∈ Lat)
5 simp12l 1282 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) ∧ 𝑢𝐵𝑣𝑆) → 𝑆𝐵)
6 simp3 1134 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) ∧ 𝑢𝐵𝑣𝑆) → 𝑣𝑆)
75, 6sseldd 3971 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) ∧ 𝑢𝐵𝑣𝑆) → 𝑣𝐵)
8 simp11r 1281 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) ∧ 𝑢𝐵𝑣𝑆) → 𝑊𝐻)
9 dihglblem.b . . . . . . . . . . . . 13 𝐵 = (Base‘𝐾)
10 dihglblem.h . . . . . . . . . . . . 13 𝐻 = (LHyp‘𝐾)
119, 10lhpbase 37138 . . . . . . . . . . . 12 (𝑊𝐻𝑊𝐵)
128, 11syl 17 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) ∧ 𝑢𝐵𝑣𝑆) → 𝑊𝐵)
13 dihglblem.l . . . . . . . . . . . 12 = (le‘𝐾)
14 dihglblem.m . . . . . . . . . . . 12 = (meet‘𝐾)
159, 13, 14latmle2 17690 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ 𝑣𝐵𝑊𝐵) → (𝑣 𝑊) 𝑊)
164, 7, 12, 15syl3anc 1367 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) ∧ 𝑢𝐵𝑣𝑆) → (𝑣 𝑊) 𝑊)
17163expia 1117 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) ∧ 𝑢𝐵) → (𝑣𝑆 → (𝑣 𝑊) 𝑊))
18 breq1 5072 . . . . . . . . . 10 (𝑢 = (𝑣 𝑊) → (𝑢 𝑊 ↔ (𝑣 𝑊) 𝑊))
1918biimprcd 252 . . . . . . . . 9 ((𝑣 𝑊) 𝑊 → (𝑢 = (𝑣 𝑊) → 𝑢 𝑊))
2017, 19syl6 35 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) ∧ 𝑢𝐵) → (𝑣𝑆 → (𝑢 = (𝑣 𝑊) → 𝑢 𝑊)))
2120rexlimdv 3286 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) ∧ 𝑢𝐵) → (∃𝑣𝑆 𝑢 = (𝑣 𝑊) → 𝑢 𝑊))
2221ss2rabdv 4055 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) → {𝑢𝐵 ∣ ∃𝑣𝑆 𝑢 = (𝑣 𝑊)} ⊆ {𝑢𝐵𝑢 𝑊})
232, 22eqsstrid 4018 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) → 𝑇 ⊆ {𝑢𝐵𝑢 𝑊})
24 dihglblem.i . . . . . . 7 𝐽 = ((DIsoB‘𝐾)‘𝑊)
259, 13, 10, 24dibdmN 38297 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → dom 𝐽 = {𝑢𝐵𝑢 𝑊})
26253ad2ant1 1129 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) → dom 𝐽 = {𝑢𝐵𝑢 𝑊})
2723, 26sseqtrrd 4011 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) → 𝑇 ⊆ dom 𝐽)
28 dihglblem.g . . . . . 6 𝐺 = (glb‘𝐾)
299, 13, 14, 28, 10, 2dihglblem2aN 38433 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) → 𝑇 ≠ ∅)
30293adant3 1128 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) → 𝑇 ≠ ∅)
3128, 10, 24dibglbN 38306 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ⊆ dom 𝐽𝑇 ≠ ∅)) → (𝐽‘(𝐺𝑇)) = 𝑥𝑇 (𝐽𝑥))
321, 27, 30, 31syl12anc 834 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) → (𝐽‘(𝐺𝑇)) = 𝑥𝑇 (𝐽𝑥))
339, 13, 14, 28, 10, 2dihglblem2N 38434 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) → (𝐺𝑆) = (𝐺𝑇))
34333adant2r 1175 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) → (𝐺𝑆) = (𝐺𝑇))
3534fveq2d 6677 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) → (𝐽‘(𝐺𝑆)) = (𝐽‘(𝐺𝑇)))
36 simpl1 1187 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) ∧ 𝑥𝑇) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3723sselda 3970 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) ∧ 𝑥𝑇) → 𝑥 ∈ {𝑢𝐵𝑢 𝑊})
38 breq1 5072 . . . . . . 7 (𝑢 = 𝑥 → (𝑢 𝑊𝑥 𝑊))
3938elrab 3683 . . . . . 6 (𝑥 ∈ {𝑢𝐵𝑢 𝑊} ↔ (𝑥𝐵𝑥 𝑊))
4037, 39sylib 220 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) ∧ 𝑥𝑇) → (𝑥𝐵𝑥 𝑊))
41 dihglblem.ih . . . . . 6 𝐼 = ((DIsoH‘𝐾)‘𝑊)
429, 13, 10, 41, 24dihvalb 38377 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥𝐵𝑥 𝑊)) → (𝐼𝑥) = (𝐽𝑥))
4336, 40, 42syl2anc 586 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) ∧ 𝑥𝑇) → (𝐼𝑥) = (𝐽𝑥))
4443iineq2dv 4947 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) → 𝑥𝑇 (𝐼𝑥) = 𝑥𝑇 (𝐽𝑥))
4532, 35, 443eqtr4rd 2870 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) → 𝑥𝑇 (𝐼𝑥) = (𝐽‘(𝐺𝑆)))
46 simp1l 1193 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) → 𝐾 ∈ HL)
47 hlclat 36498 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ CLat)
4846, 47syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) → 𝐾 ∈ CLat)
49 simp2l 1195 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) → 𝑆𝐵)
509, 28clatglbcl 17727 . . . 4 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → (𝐺𝑆) ∈ 𝐵)
5148, 49, 50syl2anc 586 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) → (𝐺𝑆) ∈ 𝐵)
52 simp3 1134 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) → (𝐺𝑆) 𝑊)
539, 13, 10, 41, 24dihvalb 38377 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐺𝑆) ∈ 𝐵 ∧ (𝐺𝑆) 𝑊)) → (𝐼‘(𝐺𝑆)) = (𝐽‘(𝐺𝑆)))
541, 51, 52, 53syl12anc 834 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) → (𝐼‘(𝐺𝑆)) = (𝐽‘(𝐺𝑆)))
5534fveq2d 6677 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) → (𝐼‘(𝐺𝑆)) = (𝐼‘(𝐺𝑇)))
5645, 54, 553eqtr2rd 2866 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) → (𝐼‘(𝐺𝑇)) = 𝑥𝑇 (𝐼𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1536  wcel 2113  wne 3019  wrex 3142  {crab 3145  wss 3939  c0 4294   ciin 4923   class class class wbr 5069  dom cdm 5558  cfv 6358  (class class class)co 7159  Basecbs 16486  lecple 16575  glbcglb 17556  meetcmee 17558  Latclat 17658  CLatccla 17720  HLchlt 36490  LHypclh 37124  DIsoBcdib 38278  DIsoHcdih 38368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-reu 3148  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-iun 4924  df-iin 4925  df-br 5070  df-opab 5132  df-mpt 5150  df-id 5463  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-map 8411  df-proset 17541  df-poset 17559  df-plt 17571  df-lub 17587  df-glb 17588  df-join 17589  df-meet 17590  df-p0 17652  df-p1 17653  df-lat 17659  df-clat 17721  df-oposet 36316  df-ol 36318  df-oml 36319  df-covers 36406  df-ats 36407  df-atl 36438  df-cvlat 36462  df-hlat 36491  df-lhyp 37128  df-laut 37129  df-ldil 37244  df-ltrn 37245  df-trl 37299  df-disoa 38169  df-dib 38279  df-dih 38369
This theorem is referenced by:  dihglblem3aN  38436
  Copyright terms: Public domain W3C validator