Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihjatcclem3 Structured version   Visualization version   GIF version

Theorem dihjatcclem3 36189
Description: Lemma for dihjatcc 36191. (Contributed by NM, 28-Sep-2014.)
Hypotheses
Ref Expression
dihjatcclem.b 𝐵 = (Base‘𝐾)
dihjatcclem.l = (le‘𝐾)
dihjatcclem.h 𝐻 = (LHyp‘𝐾)
dihjatcclem.j = (join‘𝐾)
dihjatcclem.m = (meet‘𝐾)
dihjatcclem.a 𝐴 = (Atoms‘𝐾)
dihjatcclem.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dihjatcclem.s = (LSSum‘𝑈)
dihjatcclem.i 𝐼 = ((DIsoH‘𝐾)‘𝑊)
dihjatcclem.v 𝑉 = ((𝑃 𝑄) 𝑊)
dihjatcclem.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
dihjatcclem.p (𝜑 → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
dihjatcclem.q (𝜑 → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
dihjatcc.w 𝐶 = ((oc‘𝐾)‘𝑊)
dihjatcc.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dihjatcc.r 𝑅 = ((trL‘𝐾)‘𝑊)
dihjatcc.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dihjatcc.g 𝐺 = (𝑑𝑇 (𝑑𝐶) = 𝑃)
dihjatcc.dd 𝐷 = (𝑑𝑇 (𝑑𝐶) = 𝑄)
Assertion
Ref Expression
dihjatcclem3 (𝜑 → (𝑅‘(𝐺𝐷)) = 𝑉)
Distinct variable groups:   ,𝑑   𝐴,𝑑   𝐵,𝑑   𝐶,𝑑   𝐻,𝑑   𝑃,𝑑   𝐾,𝑑   𝑄,𝑑   𝑇,𝑑   𝑊,𝑑
Allowed substitution hints:   𝜑(𝑑)   𝐷(𝑑)   (𝑑)   𝑅(𝑑)   𝑈(𝑑)   𝐸(𝑑)   𝐺(𝑑)   𝐼(𝑑)   (𝑑)   (𝑑)   𝑉(𝑑)

Proof of Theorem dihjatcclem3
StepHypRef Expression
1 dihjatcclem.k . . 3 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 dihjatcclem.l . . . . . . 7 = (le‘𝐾)
3 dihjatcclem.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
4 dihjatcclem.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
5 dihjatcc.w . . . . . . 7 𝐶 = ((oc‘𝐾)‘𝑊)
62, 3, 4, 5lhpocnel2 34785 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐶𝐴 ∧ ¬ 𝐶 𝑊))
71, 6syl 17 . . . . 5 (𝜑 → (𝐶𝐴 ∧ ¬ 𝐶 𝑊))
8 dihjatcclem.p . . . . 5 (𝜑 → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
9 dihjatcc.t . . . . . 6 𝑇 = ((LTrn‘𝐾)‘𝑊)
10 dihjatcc.g . . . . . 6 𝐺 = (𝑑𝑇 (𝑑𝐶) = 𝑃)
112, 3, 4, 9, 10ltrniotacl 35347 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐶𝐴 ∧ ¬ 𝐶 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐺𝑇)
121, 7, 8, 11syl3anc 1323 . . . 4 (𝜑𝐺𝑇)
13 dihjatcclem.q . . . . . 6 (𝜑 → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
14 dihjatcc.dd . . . . . . 7 𝐷 = (𝑑𝑇 (𝑑𝐶) = 𝑄)
152, 3, 4, 9, 14ltrniotacl 35347 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐶𝐴 ∧ ¬ 𝐶 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝐷𝑇)
161, 7, 13, 15syl3anc 1323 . . . . 5 (𝜑𝐷𝑇)
174, 9ltrncnv 34912 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐷𝑇) → 𝐷𝑇)
181, 16, 17syl2anc 692 . . . 4 (𝜑𝐷𝑇)
194, 9ltrnco 35487 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇𝐷𝑇) → (𝐺𝐷) ∈ 𝑇)
201, 12, 18, 19syl3anc 1323 . . 3 (𝜑 → (𝐺𝐷) ∈ 𝑇)
21 dihjatcclem.j . . . 4 = (join‘𝐾)
22 dihjatcclem.m . . . 4 = (meet‘𝐾)
23 dihjatcc.r . . . 4 𝑅 = ((trL‘𝐾)‘𝑊)
242, 21, 22, 3, 4, 9, 23trlval2 34930 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺𝐷) ∈ 𝑇 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝑅‘(𝐺𝐷)) = ((𝑄 ((𝐺𝐷)‘𝑄)) 𝑊))
251, 20, 13, 24syl3anc 1323 . 2 (𝜑 → (𝑅‘(𝐺𝐷)) = ((𝑄 ((𝐺𝐷)‘𝑄)) 𝑊))
2613simpld 475 . . . . . . . 8 (𝜑𝑄𝐴)
272, 3, 4, 9ltrncoval 34911 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺𝑇𝐷𝑇) ∧ 𝑄𝐴) → ((𝐺𝐷)‘𝑄) = (𝐺‘(𝐷𝑄)))
281, 12, 18, 26, 27syl121anc 1328 . . . . . . 7 (𝜑 → ((𝐺𝐷)‘𝑄) = (𝐺‘(𝐷𝑄)))
292, 3, 4, 9, 14ltrniotacnvval 35350 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐶𝐴 ∧ ¬ 𝐶 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝐷𝑄) = 𝐶)
301, 7, 13, 29syl3anc 1323 . . . . . . . . 9 (𝜑 → (𝐷𝑄) = 𝐶)
3130fveq2d 6152 . . . . . . . 8 (𝜑 → (𝐺‘(𝐷𝑄)) = (𝐺𝐶))
322, 3, 4, 9, 10ltrniotaval 35349 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐶𝐴 ∧ ¬ 𝐶 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐺𝐶) = 𝑃)
331, 7, 8, 32syl3anc 1323 . . . . . . . 8 (𝜑 → (𝐺𝐶) = 𝑃)
3431, 33eqtrd 2655 . . . . . . 7 (𝜑 → (𝐺‘(𝐷𝑄)) = 𝑃)
3528, 34eqtrd 2655 . . . . . 6 (𝜑 → ((𝐺𝐷)‘𝑄) = 𝑃)
3635oveq2d 6620 . . . . 5 (𝜑 → (𝑄 ((𝐺𝐷)‘𝑄)) = (𝑄 𝑃))
371simpld 475 . . . . . 6 (𝜑𝐾 ∈ HL)
388simpld 475 . . . . . 6 (𝜑𝑃𝐴)
3921, 3hlatjcom 34134 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) = (𝑄 𝑃))
4037, 38, 26, 39syl3anc 1323 . . . . 5 (𝜑 → (𝑃 𝑄) = (𝑄 𝑃))
4136, 40eqtr4d 2658 . . . 4 (𝜑 → (𝑄 ((𝐺𝐷)‘𝑄)) = (𝑃 𝑄))
4241oveq1d 6619 . . 3 (𝜑 → ((𝑄 ((𝐺𝐷)‘𝑄)) 𝑊) = ((𝑃 𝑄) 𝑊))
43 dihjatcclem.v . . 3 𝑉 = ((𝑃 𝑄) 𝑊)
4442, 43syl6eqr 2673 . 2 (𝜑 → ((𝑄 ((𝐺𝐷)‘𝑄)) 𝑊) = 𝑉)
4525, 44eqtrd 2655 1 (𝜑 → (𝑅‘(𝐺𝐷)) = 𝑉)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1480  wcel 1987   class class class wbr 4613  ccnv 5073  ccom 5078  cfv 5847  crio 6564  (class class class)co 6604  Basecbs 15781  lecple 15869  occoc 15870  joincjn 16865  meetcmee 16866  LSSumclsm 17970  Atomscatm 34030  HLchlt 34117  LHypclh 34750  LTrncltrn 34867  trLctrl 34925  TEndoctendo 35520  DVecHcdvh 35847  DIsoHcdih 35997
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-riotaBAD 33719
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-iun 4487  df-iin 4488  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-1st 7113  df-2nd 7114  df-undef 7344  df-map 7804  df-preset 16849  df-poset 16867  df-plt 16879  df-lub 16895  df-glb 16896  df-join 16897  df-meet 16898  df-p0 16960  df-p1 16961  df-lat 16967  df-clat 17029  df-oposet 33943  df-ol 33945  df-oml 33946  df-covers 34033  df-ats 34034  df-atl 34065  df-cvlat 34089  df-hlat 34118  df-llines 34264  df-lplanes 34265  df-lvols 34266  df-lines 34267  df-psubsp 34269  df-pmap 34270  df-padd 34562  df-lhyp 34754  df-laut 34755  df-ldil 34870  df-ltrn 34871  df-trl 34926
This theorem is referenced by:  dihjatcclem4  36190
  Copyright terms: Public domain W3C validator