Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihjatcclem4 Structured version   Visualization version   GIF version

Theorem dihjatcclem4 38559
Description: Lemma for isomorphism H of lattice join of two atoms not under the fiducial hyperplane. (Contributed by NM, 29-Sep-2014.)
Hypotheses
Ref Expression
dihjatcclem.b 𝐵 = (Base‘𝐾)
dihjatcclem.l = (le‘𝐾)
dihjatcclem.h 𝐻 = (LHyp‘𝐾)
dihjatcclem.j = (join‘𝐾)
dihjatcclem.m = (meet‘𝐾)
dihjatcclem.a 𝐴 = (Atoms‘𝐾)
dihjatcclem.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dihjatcclem.s = (LSSum‘𝑈)
dihjatcclem.i 𝐼 = ((DIsoH‘𝐾)‘𝑊)
dihjatcclem.v 𝑉 = ((𝑃 𝑄) 𝑊)
dihjatcclem.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
dihjatcclem.p (𝜑 → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
dihjatcclem.q (𝜑 → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
dihjatcc.w 𝐶 = ((oc‘𝐾)‘𝑊)
dihjatcc.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dihjatcc.r 𝑅 = ((trL‘𝐾)‘𝑊)
dihjatcc.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dihjatcc.g 𝐺 = (𝑑𝑇 (𝑑𝐶) = 𝑃)
dihjatcc.dd 𝐷 = (𝑑𝑇 (𝑑𝐶) = 𝑄)
dihjatcc.n 𝑁 = (𝑎𝐸 ↦ (𝑑𝑇(𝑎𝑑)))
dihjatcc.o 0 = (𝑑𝑇 ↦ ( I ↾ 𝐵))
dihjatcc.d 𝐽 = (𝑎𝐸, 𝑏𝐸 ↦ (𝑑𝑇 ↦ ((𝑎𝑑) ∘ (𝑏𝑑))))
Assertion
Ref Expression
dihjatcclem4 (𝜑 → (𝐼𝑉) ⊆ ((𝐼𝑃) (𝐼𝑄)))
Distinct variable groups:   ,𝑑   𝐴,𝑑   𝐵,𝑑   𝐶,𝑑   𝑎,𝑏,𝐸   𝐻,𝑑   𝑃,𝑑   𝑎,𝑑,𝐾,𝑏   𝑄,𝑑   𝑇,𝑎,𝑏,𝑑   𝑊,𝑎,𝑏,𝑑
Allowed substitution hints:   𝜑(𝑎,𝑏,𝑑)   𝐴(𝑎,𝑏)   𝐵(𝑎,𝑏)   𝐶(𝑎,𝑏)   𝐷(𝑎,𝑏,𝑑)   𝑃(𝑎,𝑏)   (𝑎,𝑏,𝑑)   𝑄(𝑎,𝑏)   𝑅(𝑎,𝑏,𝑑)   𝑈(𝑎,𝑏,𝑑)   𝐸(𝑑)   𝐺(𝑎,𝑏,𝑑)   𝐻(𝑎,𝑏)   𝐼(𝑎,𝑏,𝑑)   𝐽(𝑎,𝑏,𝑑)   (𝑎,𝑏,𝑑)   (𝑎,𝑏)   (𝑎,𝑏,𝑑)   𝑁(𝑎,𝑏,𝑑)   𝑉(𝑎,𝑏,𝑑)   0 (𝑎,𝑏,𝑑)

Proof of Theorem dihjatcclem4
Dummy variables 𝑡 𝑓 𝑠 𝑔 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dihjatcclem.k . . 3 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 dihjatcclem.h . . . 4 𝐻 = (LHyp‘𝐾)
3 dihjatcclem.i . . . 4 𝐼 = ((DIsoH‘𝐾)‘𝑊)
42, 3dihvalrel 38417 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → Rel (𝐼𝑉))
51, 4syl 17 . 2 (𝜑 → Rel (𝐼𝑉))
61adantr 483 . . . . . . 7 ((𝜑 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑉) ∧ 𝑠 = 0 )) → (𝐾 ∈ HL ∧ 𝑊𝐻))
7 dihjatcclem.l . . . . . . . . . . . 12 = (le‘𝐾)
8 dihjatcclem.a . . . . . . . . . . . 12 𝐴 = (Atoms‘𝐾)
9 dihjatcc.w . . . . . . . . . . . 12 𝐶 = ((oc‘𝐾)‘𝑊)
107, 8, 2, 9lhpocnel2 37157 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐶𝐴 ∧ ¬ 𝐶 𝑊))
111, 10syl 17 . . . . . . . . . 10 (𝜑 → (𝐶𝐴 ∧ ¬ 𝐶 𝑊))
12 dihjatcclem.p . . . . . . . . . 10 (𝜑 → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
13 dihjatcc.t . . . . . . . . . . 11 𝑇 = ((LTrn‘𝐾)‘𝑊)
14 dihjatcc.g . . . . . . . . . . 11 𝐺 = (𝑑𝑇 (𝑑𝐶) = 𝑃)
157, 8, 2, 13, 14ltrniotacl 37717 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐶𝐴 ∧ ¬ 𝐶 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐺𝑇)
161, 11, 12, 15syl3anc 1367 . . . . . . . . 9 (𝜑𝐺𝑇)
17 dihjatcclem.q . . . . . . . . . . 11 (𝜑 → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
18 dihjatcc.dd . . . . . . . . . . . 12 𝐷 = (𝑑𝑇 (𝑑𝐶) = 𝑄)
197, 8, 2, 13, 18ltrniotacl 37717 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐶𝐴 ∧ ¬ 𝐶 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝐷𝑇)
201, 11, 17, 19syl3anc 1367 . . . . . . . . . 10 (𝜑𝐷𝑇)
212, 13ltrncnv 37284 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐷𝑇) → 𝐷𝑇)
221, 20, 21syl2anc 586 . . . . . . . . 9 (𝜑𝐷𝑇)
232, 13ltrnco 37857 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇𝐷𝑇) → (𝐺𝐷) ∈ 𝑇)
241, 16, 22, 23syl3anc 1367 . . . . . . . 8 (𝜑 → (𝐺𝐷) ∈ 𝑇)
2524adantr 483 . . . . . . 7 ((𝜑 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑉) ∧ 𝑠 = 0 )) → (𝐺𝐷) ∈ 𝑇)
26 simprll 777 . . . . . . 7 ((𝜑 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑉) ∧ 𝑠 = 0 )) → 𝑓𝑇)
27 simprlr 778 . . . . . . . 8 ((𝜑 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑉) ∧ 𝑠 = 0 )) → (𝑅𝑓) 𝑉)
28 dihjatcclem.b . . . . . . . . . 10 𝐵 = (Base‘𝐾)
29 dihjatcclem.j . . . . . . . . . 10 = (join‘𝐾)
30 dihjatcclem.m . . . . . . . . . 10 = (meet‘𝐾)
31 dihjatcclem.u . . . . . . . . . 10 𝑈 = ((DVecH‘𝐾)‘𝑊)
32 dihjatcclem.s . . . . . . . . . 10 = (LSSum‘𝑈)
33 dihjatcclem.v . . . . . . . . . 10 𝑉 = ((𝑃 𝑄) 𝑊)
34 dihjatcc.r . . . . . . . . . 10 𝑅 = ((trL‘𝐾)‘𝑊)
35 dihjatcc.e . . . . . . . . . 10 𝐸 = ((TEndo‘𝐾)‘𝑊)
3628, 7, 2, 29, 30, 8, 31, 32, 3, 33, 1, 12, 17, 9, 13, 34, 35, 14, 18dihjatcclem3 38558 . . . . . . . . 9 (𝜑 → (𝑅‘(𝐺𝐷)) = 𝑉)
3736adantr 483 . . . . . . . 8 ((𝜑 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑉) ∧ 𝑠 = 0 )) → (𝑅‘(𝐺𝐷)) = 𝑉)
3827, 37breqtrrd 5096 . . . . . . 7 ((𝜑 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑉) ∧ 𝑠 = 0 )) → (𝑅𝑓) (𝑅‘(𝐺𝐷)))
397, 2, 13, 34, 35tendoex 38113 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐺𝐷) ∈ 𝑇𝑓𝑇) ∧ (𝑅𝑓) (𝑅‘(𝐺𝐷))) → ∃𝑡𝐸 (𝑡‘(𝐺𝐷)) = 𝑓)
406, 25, 26, 38, 39syl121anc 1371 . . . . . 6 ((𝜑 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑉) ∧ 𝑠 = 0 )) → ∃𝑡𝐸 (𝑡‘(𝐺𝐷)) = 𝑓)
41 df-rex 3146 . . . . . 6 (∃𝑡𝐸 (𝑡‘(𝐺𝐷)) = 𝑓 ↔ ∃𝑡(𝑡𝐸 ∧ (𝑡‘(𝐺𝐷)) = 𝑓))
4240, 41sylib 220 . . . . 5 ((𝜑 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑉) ∧ 𝑠 = 0 )) → ∃𝑡(𝑡𝐸 ∧ (𝑡‘(𝐺𝐷)) = 𝑓))
43 eqidd 2824 . . . . . . . . . 10 (((𝜑 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑉) ∧ 𝑠 = 0 )) ∧ (𝑡𝐸 ∧ (𝑡‘(𝐺𝐷)) = 𝑓)) → (𝑡𝐺) = (𝑡𝐺))
44 simprl 769 . . . . . . . . . 10 (((𝜑 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑉) ∧ 𝑠 = 0 )) ∧ (𝑡𝐸 ∧ (𝑡‘(𝐺𝐷)) = 𝑓)) → 𝑡𝐸)
451ad2antrr 724 . . . . . . . . . . 11 (((𝜑 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑉) ∧ 𝑠 = 0 )) ∧ (𝑡𝐸 ∧ (𝑡‘(𝐺𝐷)) = 𝑓)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
4612ad2antrr 724 . . . . . . . . . . 11 (((𝜑 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑉) ∧ 𝑠 = 0 )) ∧ (𝑡𝐸 ∧ (𝑡‘(𝐺𝐷)) = 𝑓)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
47 fvex 6685 . . . . . . . . . . . 12 (𝑡𝐺) ∈ V
48 vex 3499 . . . . . . . . . . . 12 𝑡 ∈ V
497, 8, 2, 9, 13, 35, 3, 14, 47, 48dihopelvalcqat 38384 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (⟨(𝑡𝐺), 𝑡⟩ ∈ (𝐼𝑃) ↔ ((𝑡𝐺) = (𝑡𝐺) ∧ 𝑡𝐸)))
5045, 46, 49syl2anc 586 . . . . . . . . . 10 (((𝜑 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑉) ∧ 𝑠 = 0 )) ∧ (𝑡𝐸 ∧ (𝑡‘(𝐺𝐷)) = 𝑓)) → (⟨(𝑡𝐺), 𝑡⟩ ∈ (𝐼𝑃) ↔ ((𝑡𝐺) = (𝑡𝐺) ∧ 𝑡𝐸)))
5143, 44, 50mpbir2and 711 . . . . . . . . 9 (((𝜑 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑉) ∧ 𝑠 = 0 )) ∧ (𝑡𝐸 ∧ (𝑡‘(𝐺𝐷)) = 𝑓)) → ⟨(𝑡𝐺), 𝑡⟩ ∈ (𝐼𝑃))
52 eqidd 2824 . . . . . . . . . 10 (((𝜑 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑉) ∧ 𝑠 = 0 )) ∧ (𝑡𝐸 ∧ (𝑡‘(𝐺𝐷)) = 𝑓)) → ((𝑁𝑡)‘𝐷) = ((𝑁𝑡)‘𝐷))
53 dihjatcc.n . . . . . . . . . . . 12 𝑁 = (𝑎𝐸 ↦ (𝑑𝑇(𝑎𝑑)))
542, 13, 35, 53tendoicl 37934 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑡𝐸) → (𝑁𝑡) ∈ 𝐸)
5545, 44, 54syl2anc 586 . . . . . . . . . 10 (((𝜑 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑉) ∧ 𝑠 = 0 )) ∧ (𝑡𝐸 ∧ (𝑡‘(𝐺𝐷)) = 𝑓)) → (𝑁𝑡) ∈ 𝐸)
5617ad2antrr 724 . . . . . . . . . . 11 (((𝜑 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑉) ∧ 𝑠 = 0 )) ∧ (𝑡𝐸 ∧ (𝑡‘(𝐺𝐷)) = 𝑓)) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
57 fvex 6685 . . . . . . . . . . . 12 ((𝑁𝑡)‘𝐷) ∈ V
58 fvex 6685 . . . . . . . . . . . 12 (𝑁𝑡) ∈ V
597, 8, 2, 9, 13, 35, 3, 18, 57, 58dihopelvalcqat 38384 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (⟨((𝑁𝑡)‘𝐷), (𝑁𝑡)⟩ ∈ (𝐼𝑄) ↔ (((𝑁𝑡)‘𝐷) = ((𝑁𝑡)‘𝐷) ∧ (𝑁𝑡) ∈ 𝐸)))
6045, 56, 59syl2anc 586 . . . . . . . . . 10 (((𝜑 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑉) ∧ 𝑠 = 0 )) ∧ (𝑡𝐸 ∧ (𝑡‘(𝐺𝐷)) = 𝑓)) → (⟨((𝑁𝑡)‘𝐷), (𝑁𝑡)⟩ ∈ (𝐼𝑄) ↔ (((𝑁𝑡)‘𝐷) = ((𝑁𝑡)‘𝐷) ∧ (𝑁𝑡) ∈ 𝐸)))
6152, 55, 60mpbir2and 711 . . . . . . . . 9 (((𝜑 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑉) ∧ 𝑠 = 0 )) ∧ (𝑡𝐸 ∧ (𝑡‘(𝐺𝐷)) = 𝑓)) → ⟨((𝑁𝑡)‘𝐷), (𝑁𝑡)⟩ ∈ (𝐼𝑄))
6216ad2antrr 724 . . . . . . . . . . 11 (((𝜑 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑉) ∧ 𝑠 = 0 )) ∧ (𝑡𝐸 ∧ (𝑡‘(𝐺𝐷)) = 𝑓)) → 𝐺𝑇)
6322ad2antrr 724 . . . . . . . . . . 11 (((𝜑 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑉) ∧ 𝑠 = 0 )) ∧ (𝑡𝐸 ∧ (𝑡‘(𝐺𝐷)) = 𝑓)) → 𝐷𝑇)
642, 13, 35tendospdi1 38158 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑡𝐸𝐺𝑇𝐷𝑇)) → (𝑡‘(𝐺𝐷)) = ((𝑡𝐺) ∘ (𝑡𝐷)))
6545, 44, 62, 63, 64syl13anc 1368 . . . . . . . . . 10 (((𝜑 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑉) ∧ 𝑠 = 0 )) ∧ (𝑡𝐸 ∧ (𝑡‘(𝐺𝐷)) = 𝑓)) → (𝑡‘(𝐺𝐷)) = ((𝑡𝐺) ∘ (𝑡𝐷)))
66 simprr 771 . . . . . . . . . 10 (((𝜑 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑉) ∧ 𝑠 = 0 )) ∧ (𝑡𝐸 ∧ (𝑡‘(𝐺𝐷)) = 𝑓)) → (𝑡‘(𝐺𝐷)) = 𝑓)
6720ad2antrr 724 . . . . . . . . . . . . 13 (((𝜑 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑉) ∧ 𝑠 = 0 )) ∧ (𝑡𝐸 ∧ (𝑡‘(𝐺𝐷)) = 𝑓)) → 𝐷𝑇)
6853, 13tendoi2 37933 . . . . . . . . . . . . 13 ((𝑡𝐸𝐷𝑇) → ((𝑁𝑡)‘𝐷) = (𝑡𝐷))
6944, 67, 68syl2anc 586 . . . . . . . . . . . 12 (((𝜑 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑉) ∧ 𝑠 = 0 )) ∧ (𝑡𝐸 ∧ (𝑡‘(𝐺𝐷)) = 𝑓)) → ((𝑁𝑡)‘𝐷) = (𝑡𝐷))
702, 13, 35tendocnv 38159 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑡𝐸𝐷𝑇) → (𝑡𝐷) = (𝑡𝐷))
7145, 44, 67, 70syl3anc 1367 . . . . . . . . . . . 12 (((𝜑 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑉) ∧ 𝑠 = 0 )) ∧ (𝑡𝐸 ∧ (𝑡‘(𝐺𝐷)) = 𝑓)) → (𝑡𝐷) = (𝑡𝐷))
7269, 71eqtr2d 2859 . . . . . . . . . . 11 (((𝜑 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑉) ∧ 𝑠 = 0 )) ∧ (𝑡𝐸 ∧ (𝑡‘(𝐺𝐷)) = 𝑓)) → (𝑡𝐷) = ((𝑁𝑡)‘𝐷))
7372coeq2d 5735 . . . . . . . . . 10 (((𝜑 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑉) ∧ 𝑠 = 0 )) ∧ (𝑡𝐸 ∧ (𝑡‘(𝐺𝐷)) = 𝑓)) → ((𝑡𝐺) ∘ (𝑡𝐷)) = ((𝑡𝐺) ∘ ((𝑁𝑡)‘𝐷)))
7465, 66, 733eqtr3d 2866 . . . . . . . . 9 (((𝜑 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑉) ∧ 𝑠 = 0 )) ∧ (𝑡𝐸 ∧ (𝑡‘(𝐺𝐷)) = 𝑓)) → 𝑓 = ((𝑡𝐺) ∘ ((𝑁𝑡)‘𝐷)))
75 simplrr 776 . . . . . . . . . 10 (((𝜑 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑉) ∧ 𝑠 = 0 )) ∧ (𝑡𝐸 ∧ (𝑡‘(𝐺𝐷)) = 𝑓)) → 𝑠 = 0 )
76 dihjatcc.d . . . . . . . . . . . 12 𝐽 = (𝑎𝐸, 𝑏𝐸 ↦ (𝑑𝑇 ↦ ((𝑎𝑑) ∘ (𝑏𝑑))))
77 dihjatcc.o . . . . . . . . . . . 12 0 = (𝑑𝑇 ↦ ( I ↾ 𝐵))
782, 13, 35, 53, 28, 76, 77tendoipl2 37936 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑡𝐸) → (𝑡𝐽(𝑁𝑡)) = 0 )
7945, 44, 78syl2anc 586 . . . . . . . . . 10 (((𝜑 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑉) ∧ 𝑠 = 0 )) ∧ (𝑡𝐸 ∧ (𝑡‘(𝐺𝐷)) = 𝑓)) → (𝑡𝐽(𝑁𝑡)) = 0 )
8075, 79eqtr4d 2861 . . . . . . . . 9 (((𝜑 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑉) ∧ 𝑠 = 0 )) ∧ (𝑡𝐸 ∧ (𝑡‘(𝐺𝐷)) = 𝑓)) → 𝑠 = (𝑡𝐽(𝑁𝑡)))
81 opeq1 4805 . . . . . . . . . . . . . . 15 (𝑔 = (𝑡𝐺) → ⟨𝑔, 𝑡⟩ = ⟨(𝑡𝐺), 𝑡⟩)
8281eleq1d 2899 . . . . . . . . . . . . . 14 (𝑔 = (𝑡𝐺) → (⟨𝑔, 𝑡⟩ ∈ (𝐼𝑃) ↔ ⟨(𝑡𝐺), 𝑡⟩ ∈ (𝐼𝑃)))
8382anbi1d 631 . . . . . . . . . . . . 13 (𝑔 = (𝑡𝐺) → ((⟨𝑔, 𝑡⟩ ∈ (𝐼𝑃) ∧ ⟨, 𝑢⟩ ∈ (𝐼𝑄)) ↔ (⟨(𝑡𝐺), 𝑡⟩ ∈ (𝐼𝑃) ∧ ⟨, 𝑢⟩ ∈ (𝐼𝑄))))
84 coeq1 5730 . . . . . . . . . . . . . . 15 (𝑔 = (𝑡𝐺) → (𝑔) = ((𝑡𝐺) ∘ ))
8584eqeq2d 2834 . . . . . . . . . . . . . 14 (𝑔 = (𝑡𝐺) → (𝑓 = (𝑔) ↔ 𝑓 = ((𝑡𝐺) ∘ )))
8685anbi1d 631 . . . . . . . . . . . . 13 (𝑔 = (𝑡𝐺) → ((𝑓 = (𝑔) ∧ 𝑠 = (𝑡𝐽𝑢)) ↔ (𝑓 = ((𝑡𝐺) ∘ ) ∧ 𝑠 = (𝑡𝐽𝑢))))
8783, 86anbi12d 632 . . . . . . . . . . . 12 (𝑔 = (𝑡𝐺) → (((⟨𝑔, 𝑡⟩ ∈ (𝐼𝑃) ∧ ⟨, 𝑢⟩ ∈ (𝐼𝑄)) ∧ (𝑓 = (𝑔) ∧ 𝑠 = (𝑡𝐽𝑢))) ↔ ((⟨(𝑡𝐺), 𝑡⟩ ∈ (𝐼𝑃) ∧ ⟨, 𝑢⟩ ∈ (𝐼𝑄)) ∧ (𝑓 = ((𝑡𝐺) ∘ ) ∧ 𝑠 = (𝑡𝐽𝑢)))))
88 opeq1 4805 . . . . . . . . . . . . . . 15 ( = ((𝑁𝑡)‘𝐷) → ⟨, 𝑢⟩ = ⟨((𝑁𝑡)‘𝐷), 𝑢⟩)
8988eleq1d 2899 . . . . . . . . . . . . . 14 ( = ((𝑁𝑡)‘𝐷) → (⟨, 𝑢⟩ ∈ (𝐼𝑄) ↔ ⟨((𝑁𝑡)‘𝐷), 𝑢⟩ ∈ (𝐼𝑄)))
9089anbi2d 630 . . . . . . . . . . . . 13 ( = ((𝑁𝑡)‘𝐷) → ((⟨(𝑡𝐺), 𝑡⟩ ∈ (𝐼𝑃) ∧ ⟨, 𝑢⟩ ∈ (𝐼𝑄)) ↔ (⟨(𝑡𝐺), 𝑡⟩ ∈ (𝐼𝑃) ∧ ⟨((𝑁𝑡)‘𝐷), 𝑢⟩ ∈ (𝐼𝑄))))
91 coeq2 5731 . . . . . . . . . . . . . . 15 ( = ((𝑁𝑡)‘𝐷) → ((𝑡𝐺) ∘ ) = ((𝑡𝐺) ∘ ((𝑁𝑡)‘𝐷)))
9291eqeq2d 2834 . . . . . . . . . . . . . 14 ( = ((𝑁𝑡)‘𝐷) → (𝑓 = ((𝑡𝐺) ∘ ) ↔ 𝑓 = ((𝑡𝐺) ∘ ((𝑁𝑡)‘𝐷))))
9392anbi1d 631 . . . . . . . . . . . . 13 ( = ((𝑁𝑡)‘𝐷) → ((𝑓 = ((𝑡𝐺) ∘ ) ∧ 𝑠 = (𝑡𝐽𝑢)) ↔ (𝑓 = ((𝑡𝐺) ∘ ((𝑁𝑡)‘𝐷)) ∧ 𝑠 = (𝑡𝐽𝑢))))
9490, 93anbi12d 632 . . . . . . . . . . . 12 ( = ((𝑁𝑡)‘𝐷) → (((⟨(𝑡𝐺), 𝑡⟩ ∈ (𝐼𝑃) ∧ ⟨, 𝑢⟩ ∈ (𝐼𝑄)) ∧ (𝑓 = ((𝑡𝐺) ∘ ) ∧ 𝑠 = (𝑡𝐽𝑢))) ↔ ((⟨(𝑡𝐺), 𝑡⟩ ∈ (𝐼𝑃) ∧ ⟨((𝑁𝑡)‘𝐷), 𝑢⟩ ∈ (𝐼𝑄)) ∧ (𝑓 = ((𝑡𝐺) ∘ ((𝑁𝑡)‘𝐷)) ∧ 𝑠 = (𝑡𝐽𝑢)))))
95 opeq2 4806 . . . . . . . . . . . . . . 15 (𝑢 = (𝑁𝑡) → ⟨((𝑁𝑡)‘𝐷), 𝑢⟩ = ⟨((𝑁𝑡)‘𝐷), (𝑁𝑡)⟩)
9695eleq1d 2899 . . . . . . . . . . . . . 14 (𝑢 = (𝑁𝑡) → (⟨((𝑁𝑡)‘𝐷), 𝑢⟩ ∈ (𝐼𝑄) ↔ ⟨((𝑁𝑡)‘𝐷), (𝑁𝑡)⟩ ∈ (𝐼𝑄)))
9796anbi2d 630 . . . . . . . . . . . . 13 (𝑢 = (𝑁𝑡) → ((⟨(𝑡𝐺), 𝑡⟩ ∈ (𝐼𝑃) ∧ ⟨((𝑁𝑡)‘𝐷), 𝑢⟩ ∈ (𝐼𝑄)) ↔ (⟨(𝑡𝐺), 𝑡⟩ ∈ (𝐼𝑃) ∧ ⟨((𝑁𝑡)‘𝐷), (𝑁𝑡)⟩ ∈ (𝐼𝑄))))
98 oveq2 7166 . . . . . . . . . . . . . . 15 (𝑢 = (𝑁𝑡) → (𝑡𝐽𝑢) = (𝑡𝐽(𝑁𝑡)))
9998eqeq2d 2834 . . . . . . . . . . . . . 14 (𝑢 = (𝑁𝑡) → (𝑠 = (𝑡𝐽𝑢) ↔ 𝑠 = (𝑡𝐽(𝑁𝑡))))
10099anbi2d 630 . . . . . . . . . . . . 13 (𝑢 = (𝑁𝑡) → ((𝑓 = ((𝑡𝐺) ∘ ((𝑁𝑡)‘𝐷)) ∧ 𝑠 = (𝑡𝐽𝑢)) ↔ (𝑓 = ((𝑡𝐺) ∘ ((𝑁𝑡)‘𝐷)) ∧ 𝑠 = (𝑡𝐽(𝑁𝑡)))))
10197, 100anbi12d 632 . . . . . . . . . . . 12 (𝑢 = (𝑁𝑡) → (((⟨(𝑡𝐺), 𝑡⟩ ∈ (𝐼𝑃) ∧ ⟨((𝑁𝑡)‘𝐷), 𝑢⟩ ∈ (𝐼𝑄)) ∧ (𝑓 = ((𝑡𝐺) ∘ ((𝑁𝑡)‘𝐷)) ∧ 𝑠 = (𝑡𝐽𝑢))) ↔ ((⟨(𝑡𝐺), 𝑡⟩ ∈ (𝐼𝑃) ∧ ⟨((𝑁𝑡)‘𝐷), (𝑁𝑡)⟩ ∈ (𝐼𝑄)) ∧ (𝑓 = ((𝑡𝐺) ∘ ((𝑁𝑡)‘𝐷)) ∧ 𝑠 = (𝑡𝐽(𝑁𝑡))))))
10287, 94, 101syl3an9b 1430 . . . . . . . . . . 11 ((𝑔 = (𝑡𝐺) ∧ = ((𝑁𝑡)‘𝐷) ∧ 𝑢 = (𝑁𝑡)) → (((⟨𝑔, 𝑡⟩ ∈ (𝐼𝑃) ∧ ⟨, 𝑢⟩ ∈ (𝐼𝑄)) ∧ (𝑓 = (𝑔) ∧ 𝑠 = (𝑡𝐽𝑢))) ↔ ((⟨(𝑡𝐺), 𝑡⟩ ∈ (𝐼𝑃) ∧ ⟨((𝑁𝑡)‘𝐷), (𝑁𝑡)⟩ ∈ (𝐼𝑄)) ∧ (𝑓 = ((𝑡𝐺) ∘ ((𝑁𝑡)‘𝐷)) ∧ 𝑠 = (𝑡𝐽(𝑁𝑡))))))
103102spc3egv 3606 . . . . . . . . . 10 (((𝑡𝐺) ∈ V ∧ ((𝑁𝑡)‘𝐷) ∈ V ∧ (𝑁𝑡) ∈ V) → (((⟨(𝑡𝐺), 𝑡⟩ ∈ (𝐼𝑃) ∧ ⟨((𝑁𝑡)‘𝐷), (𝑁𝑡)⟩ ∈ (𝐼𝑄)) ∧ (𝑓 = ((𝑡𝐺) ∘ ((𝑁𝑡)‘𝐷)) ∧ 𝑠 = (𝑡𝐽(𝑁𝑡)))) → ∃𝑔𝑢((⟨𝑔, 𝑡⟩ ∈ (𝐼𝑃) ∧ ⟨, 𝑢⟩ ∈ (𝐼𝑄)) ∧ (𝑓 = (𝑔) ∧ 𝑠 = (𝑡𝐽𝑢)))))
10447, 57, 58, 103mp3an 1457 . . . . . . . . 9 (((⟨(𝑡𝐺), 𝑡⟩ ∈ (𝐼𝑃) ∧ ⟨((𝑁𝑡)‘𝐷), (𝑁𝑡)⟩ ∈ (𝐼𝑄)) ∧ (𝑓 = ((𝑡𝐺) ∘ ((𝑁𝑡)‘𝐷)) ∧ 𝑠 = (𝑡𝐽(𝑁𝑡)))) → ∃𝑔𝑢((⟨𝑔, 𝑡⟩ ∈ (𝐼𝑃) ∧ ⟨, 𝑢⟩ ∈ (𝐼𝑄)) ∧ (𝑓 = (𝑔) ∧ 𝑠 = (𝑡𝐽𝑢))))
10551, 61, 74, 80, 104syl22anc 836 . . . . . . . 8 (((𝜑 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑉) ∧ 𝑠 = 0 )) ∧ (𝑡𝐸 ∧ (𝑡‘(𝐺𝐷)) = 𝑓)) → ∃𝑔𝑢((⟨𝑔, 𝑡⟩ ∈ (𝐼𝑃) ∧ ⟨, 𝑢⟩ ∈ (𝐼𝑄)) ∧ (𝑓 = (𝑔) ∧ 𝑠 = (𝑡𝐽𝑢))))
106105ex 415 . . . . . . 7 ((𝜑 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑉) ∧ 𝑠 = 0 )) → ((𝑡𝐸 ∧ (𝑡‘(𝐺𝐷)) = 𝑓) → ∃𝑔𝑢((⟨𝑔, 𝑡⟩ ∈ (𝐼𝑃) ∧ ⟨, 𝑢⟩ ∈ (𝐼𝑄)) ∧ (𝑓 = (𝑔) ∧ 𝑠 = (𝑡𝐽𝑢)))))
107106eximdv 1918 . . . . . 6 ((𝜑 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑉) ∧ 𝑠 = 0 )) → (∃𝑡(𝑡𝐸 ∧ (𝑡‘(𝐺𝐷)) = 𝑓) → ∃𝑡𝑔𝑢((⟨𝑔, 𝑡⟩ ∈ (𝐼𝑃) ∧ ⟨, 𝑢⟩ ∈ (𝐼𝑄)) ∧ (𝑓 = (𝑔) ∧ 𝑠 = (𝑡𝐽𝑢)))))
108 excom 2169 . . . . . 6 (∃𝑡𝑔𝑢((⟨𝑔, 𝑡⟩ ∈ (𝐼𝑃) ∧ ⟨, 𝑢⟩ ∈ (𝐼𝑄)) ∧ (𝑓 = (𝑔) ∧ 𝑠 = (𝑡𝐽𝑢))) ↔ ∃𝑔𝑡𝑢((⟨𝑔, 𝑡⟩ ∈ (𝐼𝑃) ∧ ⟨, 𝑢⟩ ∈ (𝐼𝑄)) ∧ (𝑓 = (𝑔) ∧ 𝑠 = (𝑡𝐽𝑢))))
109107, 108syl6ib 253 . . . . 5 ((𝜑 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑉) ∧ 𝑠 = 0 )) → (∃𝑡(𝑡𝐸 ∧ (𝑡‘(𝐺𝐷)) = 𝑓) → ∃𝑔𝑡𝑢((⟨𝑔, 𝑡⟩ ∈ (𝐼𝑃) ∧ ⟨, 𝑢⟩ ∈ (𝐼𝑄)) ∧ (𝑓 = (𝑔) ∧ 𝑠 = (𝑡𝐽𝑢)))))
11042, 109mpd 15 . . . 4 ((𝜑 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑉) ∧ 𝑠 = 0 )) → ∃𝑔𝑡𝑢((⟨𝑔, 𝑡⟩ ∈ (𝐼𝑃) ∧ ⟨, 𝑢⟩ ∈ (𝐼𝑄)) ∧ (𝑓 = (𝑔) ∧ 𝑠 = (𝑡𝐽𝑢))))
111110ex 415 . . 3 (𝜑 → (((𝑓𝑇 ∧ (𝑅𝑓) 𝑉) ∧ 𝑠 = 0 ) → ∃𝑔𝑡𝑢((⟨𝑔, 𝑡⟩ ∈ (𝐼𝑃) ∧ ⟨, 𝑢⟩ ∈ (𝐼𝑄)) ∧ (𝑓 = (𝑔) ∧ 𝑠 = (𝑡𝐽𝑢)))))
1121simpld 497 . . . . . . . . 9 (𝜑𝐾 ∈ HL)
113112hllatd 36502 . . . . . . . 8 (𝜑𝐾 ∈ Lat)
11412simpld 497 . . . . . . . . 9 (𝜑𝑃𝐴)
11517simpld 497 . . . . . . . . 9 (𝜑𝑄𝐴)
11628, 29, 8hlatjcl 36505 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ 𝐵)
117112, 114, 115, 116syl3anc 1367 . . . . . . . 8 (𝜑 → (𝑃 𝑄) ∈ 𝐵)
1181simprd 498 . . . . . . . . 9 (𝜑𝑊𝐻)
11928, 2lhpbase 37136 . . . . . . . . 9 (𝑊𝐻𝑊𝐵)
120118, 119syl 17 . . . . . . . 8 (𝜑𝑊𝐵)
12128, 30latmcl 17664 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ 𝐵𝑊𝐵) → ((𝑃 𝑄) 𝑊) ∈ 𝐵)
122113, 117, 120, 121syl3anc 1367 . . . . . . 7 (𝜑 → ((𝑃 𝑄) 𝑊) ∈ 𝐵)
12333, 122eqeltrid 2919 . . . . . 6 (𝜑𝑉𝐵)
12428, 7, 30latmle2 17689 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ 𝐵𝑊𝐵) → ((𝑃 𝑄) 𝑊) 𝑊)
125113, 117, 120, 124syl3anc 1367 . . . . . . 7 (𝜑 → ((𝑃 𝑄) 𝑊) 𝑊)
12633, 125eqbrtrid 5103 . . . . . 6 (𝜑𝑉 𝑊)
127 eqid 2823 . . . . . . 7 ((DIsoB‘𝐾)‘𝑊) = ((DIsoB‘𝐾)‘𝑊)
12828, 7, 2, 3, 127dihvalb 38375 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑉𝐵𝑉 𝑊)) → (𝐼𝑉) = (((DIsoB‘𝐾)‘𝑊)‘𝑉))
1291, 123, 126, 128syl12anc 834 . . . . 5 (𝜑 → (𝐼𝑉) = (((DIsoB‘𝐾)‘𝑊)‘𝑉))
130129eleq2d 2900 . . . 4 (𝜑 → (⟨𝑓, 𝑠⟩ ∈ (𝐼𝑉) ↔ ⟨𝑓, 𝑠⟩ ∈ (((DIsoB‘𝐾)‘𝑊)‘𝑉)))
13128, 7, 2, 13, 34, 77, 127dibopelval3 38286 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑉𝐵𝑉 𝑊)) → (⟨𝑓, 𝑠⟩ ∈ (((DIsoB‘𝐾)‘𝑊)‘𝑉) ↔ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑉) ∧ 𝑠 = 0 )))
1321, 123, 126, 131syl12anc 834 . . . 4 (𝜑 → (⟨𝑓, 𝑠⟩ ∈ (((DIsoB‘𝐾)‘𝑊)‘𝑉) ↔ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑉) ∧ 𝑠 = 0 )))
133130, 132bitrd 281 . . 3 (𝜑 → (⟨𝑓, 𝑠⟩ ∈ (𝐼𝑉) ↔ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑉) ∧ 𝑠 = 0 )))
134 eqid 2823 . . . 4 (LSubSp‘𝑈) = (LSubSp‘𝑈)
13528, 8atbase 36427 . . . . 5 (𝑃𝐴𝑃𝐵)
136114, 135syl 17 . . . 4 (𝜑𝑃𝐵)
13728, 8atbase 36427 . . . . 5 (𝑄𝐴𝑄𝐵)
138115, 137syl 17 . . . 4 (𝜑𝑄𝐵)
13928, 2, 13, 35, 76, 31, 134, 32, 3, 1, 136, 138dihopellsm 38393 . . 3 (𝜑 → (⟨𝑓, 𝑠⟩ ∈ ((𝐼𝑃) (𝐼𝑄)) ↔ ∃𝑔𝑡𝑢((⟨𝑔, 𝑡⟩ ∈ (𝐼𝑃) ∧ ⟨, 𝑢⟩ ∈ (𝐼𝑄)) ∧ (𝑓 = (𝑔) ∧ 𝑠 = (𝑡𝐽𝑢)))))
140111, 133, 1393imtr4d 296 . 2 (𝜑 → (⟨𝑓, 𝑠⟩ ∈ (𝐼𝑉) → ⟨𝑓, 𝑠⟩ ∈ ((𝐼𝑃) (𝐼𝑄))))
1415, 140relssdv 5663 1 (𝜑 → (𝐼𝑉) ⊆ ((𝐼𝑃) (𝐼𝑄)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1537  wex 1780  wcel 2114  wrex 3141  Vcvv 3496  wss 3938  cop 4575   class class class wbr 5068  cmpt 5148   I cid 5461  ccnv 5556  cres 5559  ccom 5561  Rel wrel 5562  cfv 6357  crio 7115  (class class class)co 7158  cmpo 7160  Basecbs 16485  lecple 16574  occoc 16575  joincjn 17556  meetcmee 17557  Latclat 17657  LSSumclsm 18761  LSubSpclss 19705  Atomscatm 36401  HLchlt 36488  LHypclh 37122  LTrncltrn 37239  trLctrl 37296  TEndoctendo 37890  DVecHcdvh 38216  DIsoBcdib 38276  DIsoHcdih 38366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-riotaBAD 36091
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-tpos 7894  df-undef 7941  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-n0 11901  df-z 11985  df-uz 12247  df-fz 12896  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-sca 16583  df-vsca 16584  df-0g 16717  df-proset 17540  df-poset 17558  df-plt 17570  df-lub 17586  df-glb 17587  df-join 17588  df-meet 17589  df-p0 17651  df-p1 17652  df-lat 17658  df-clat 17720  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-submnd 17959  df-grp 18108  df-minusg 18109  df-sbg 18110  df-subg 18278  df-cntz 18449  df-lsm 18763  df-cmn 18910  df-abl 18911  df-mgp 19242  df-ur 19254  df-ring 19301  df-oppr 19375  df-dvdsr 19393  df-unit 19394  df-invr 19424  df-dvr 19435  df-drng 19506  df-lmod 19638  df-lss 19706  df-lsp 19746  df-lvec 19877  df-oposet 36314  df-ol 36316  df-oml 36317  df-covers 36404  df-ats 36405  df-atl 36436  df-cvlat 36460  df-hlat 36489  df-llines 36636  df-lplanes 36637  df-lvols 36638  df-lines 36639  df-psubsp 36641  df-pmap 36642  df-padd 36934  df-lhyp 37126  df-laut 37127  df-ldil 37242  df-ltrn 37243  df-trl 37297  df-tendo 37893  df-edring 37895  df-disoa 38167  df-dvech 38217  df-dib 38277  df-dic 38311  df-dih 38367
This theorem is referenced by:  dihjatcc  38560
  Copyright terms: Public domain W3C validator