Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihmeet Structured version   Visualization version   GIF version

Theorem dihmeet 35448
Description: Isomorphism H of a lattice meet. (Contributed by NM, 13-Apr-2014.)
Hypotheses
Ref Expression
dihmeet.b 𝐵 = (Base‘𝐾)
dihmeet.m = (meet‘𝐾)
dihmeet.h 𝐻 = (LHyp‘𝐾)
dihmeet.i 𝐼 = ((DIsoH‘𝐾)‘𝑊)
Assertion
Ref Expression
dihmeet (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵𝑌𝐵) → (𝐼‘(𝑋 𝑌)) = ((𝐼𝑋) ∩ (𝐼𝑌)))

Proof of Theorem dihmeet
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2604 . . . 4 (glb‘𝐾) = (glb‘𝐾)
2 dihmeet.m . . . 4 = (meet‘𝐾)
3 simp1l 1077 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ HL)
4 simp2 1054 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵𝑌𝐵) → 𝑋𝐵)
5 simp3 1055 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵𝑌𝐵) → 𝑌𝐵)
61, 2, 3, 4, 5meetval 16783 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) = ((glb‘𝐾)‘{𝑋, 𝑌}))
76fveq2d 6087 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵𝑌𝐵) → (𝐼‘(𝑋 𝑌)) = (𝐼‘((glb‘𝐾)‘{𝑋, 𝑌})))
8 simp1 1053 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵𝑌𝐵) → (𝐾 ∈ HL ∧ 𝑊𝐻))
9 prssi 4287 . . . 4 ((𝑋𝐵𝑌𝐵) → {𝑋, 𝑌} ⊆ 𝐵)
1093adant1 1071 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵𝑌𝐵) → {𝑋, 𝑌} ⊆ 𝐵)
11 prnzg 4248 . . . 4 (𝑋𝐵 → {𝑋, 𝑌} ≠ ∅)
12113ad2ant2 1075 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵𝑌𝐵) → {𝑋, 𝑌} ≠ ∅)
13 dihmeet.b . . . 4 𝐵 = (Base‘𝐾)
14 dihmeet.h . . . 4 𝐻 = (LHyp‘𝐾)
15 dihmeet.i . . . 4 𝐼 = ((DIsoH‘𝐾)‘𝑊)
1613, 1, 14, 15dihglb 35446 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ({𝑋, 𝑌} ⊆ 𝐵 ∧ {𝑋, 𝑌} ≠ ∅)) → (𝐼‘((glb‘𝐾)‘{𝑋, 𝑌})) = 𝑥 ∈ {𝑋, 𝑌} (𝐼𝑥))
178, 10, 12, 16syl12anc 1315 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵𝑌𝐵) → (𝐼‘((glb‘𝐾)‘{𝑋, 𝑌})) = 𝑥 ∈ {𝑋, 𝑌} (𝐼𝑥))
18 fveq2 6083 . . . 4 (𝑥 = 𝑋 → (𝐼𝑥) = (𝐼𝑋))
19 fveq2 6083 . . . 4 (𝑥 = 𝑌 → (𝐼𝑥) = (𝐼𝑌))
2018, 19iinxprg 4526 . . 3 ((𝑋𝐵𝑌𝐵) → 𝑥 ∈ {𝑋, 𝑌} (𝐼𝑥) = ((𝐼𝑋) ∩ (𝐼𝑌)))
21203adant1 1071 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵𝑌𝐵) → 𝑥 ∈ {𝑋, 𝑌} (𝐼𝑥) = ((𝐼𝑋) ∩ (𝐼𝑌)))
227, 17, 213eqtrd 2642 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵𝑌𝐵) → (𝐼‘(𝑋 𝑌)) = ((𝐼𝑋) ∩ (𝐼𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1030   = wceq 1474  wcel 1975  wne 2774  cin 3533  wss 3534  c0 3868  {cpr 4121   ciin 4445  cfv 5785  (class class class)co 6522  Basecbs 15636  glbcglb 16707  meetcmee 16709  HLchlt 33453  LHypclh 34086  DIsoHcdih 35333
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2227  ax-ext 2584  ax-rep 4688  ax-sep 4698  ax-nul 4707  ax-pow 4759  ax-pr 4823  ax-un 6819  ax-cnex 9843  ax-resscn 9844  ax-1cn 9845  ax-icn 9846  ax-addcl 9847  ax-addrcl 9848  ax-mulcl 9849  ax-mulrcl 9850  ax-mulcom 9851  ax-addass 9852  ax-mulass 9853  ax-distr 9854  ax-i2m1 9855  ax-1ne0 9856  ax-1rid 9857  ax-rnegex 9858  ax-rrecex 9859  ax-cnre 9860  ax-pre-lttri 9861  ax-pre-lttrn 9862  ax-pre-ltadd 9863  ax-pre-mulgt0 9864  ax-riotaBAD 33055
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2456  df-mo 2457  df-clab 2591  df-cleq 2597  df-clel 2600  df-nfc 2734  df-ne 2776  df-nel 2777  df-ral 2895  df-rex 2896  df-reu 2897  df-rmo 2898  df-rab 2899  df-v 3169  df-sbc 3397  df-csb 3494  df-dif 3537  df-un 3539  df-in 3541  df-ss 3548  df-pss 3550  df-nul 3869  df-if 4031  df-pw 4104  df-sn 4120  df-pr 4122  df-tp 4124  df-op 4126  df-uni 4362  df-int 4400  df-iun 4446  df-iin 4447  df-br 4573  df-opab 4633  df-mpt 4634  df-tr 4670  df-eprel 4934  df-id 4938  df-po 4944  df-so 4945  df-fr 4982  df-we 4984  df-xp 5029  df-rel 5030  df-cnv 5031  df-co 5032  df-dm 5033  df-rn 5034  df-res 5035  df-ima 5036  df-pred 5578  df-ord 5624  df-on 5625  df-lim 5626  df-suc 5627  df-iota 5749  df-fun 5787  df-fn 5788  df-f 5789  df-f1 5790  df-fo 5791  df-f1o 5792  df-fv 5793  df-riota 6484  df-ov 6525  df-oprab 6526  df-mpt2 6527  df-om 6930  df-1st 7031  df-2nd 7032  df-tpos 7211  df-undef 7258  df-wrecs 7266  df-recs 7327  df-rdg 7365  df-1o 7419  df-oadd 7423  df-er 7601  df-map 7718  df-en 7814  df-dom 7815  df-sdom 7816  df-fin 7817  df-pnf 9927  df-mnf 9928  df-xr 9929  df-ltxr 9930  df-le 9931  df-sub 10114  df-neg 10115  df-nn 10863  df-2 10921  df-3 10922  df-4 10923  df-5 10924  df-6 10925  df-n0 11135  df-z 11206  df-uz 11515  df-fz 12148  df-struct 15638  df-ndx 15639  df-slot 15640  df-base 15641  df-sets 15642  df-ress 15643  df-plusg 15722  df-mulr 15723  df-sca 15725  df-vsca 15726  df-0g 15866  df-preset 16692  df-poset 16710  df-plt 16722  df-lub 16738  df-glb 16739  df-join 16740  df-meet 16741  df-p0 16803  df-p1 16804  df-lat 16810  df-clat 16872  df-mgm 17006  df-sgrp 17048  df-mnd 17059  df-submnd 17100  df-grp 17189  df-minusg 17190  df-sbg 17191  df-subg 17355  df-cntz 17514  df-lsm 17815  df-cmn 17959  df-abl 17960  df-mgp 18254  df-ur 18266  df-ring 18313  df-oppr 18387  df-dvdsr 18405  df-unit 18406  df-invr 18436  df-dvr 18447  df-drng 18513  df-lmod 18629  df-lss 18695  df-lsp 18734  df-lvec 18865  df-lsatoms 33079  df-oposet 33279  df-ol 33281  df-oml 33282  df-covers 33369  df-ats 33370  df-atl 33401  df-cvlat 33425  df-hlat 33454  df-llines 33600  df-lplanes 33601  df-lvols 33602  df-lines 33603  df-psubsp 33605  df-pmap 33606  df-padd 33898  df-lhyp 34090  df-laut 34091  df-ldil 34206  df-ltrn 34207  df-trl 34262  df-tendo 34859  df-edring 34861  df-disoa 35134  df-dvech 35184  df-dib 35244  df-dic 35278  df-dih 35334
This theorem is referenced by:  dihmeetcl  35450  dihmeet2  35451  dochnoncon  35496  djhlj  35506
  Copyright terms: Public domain W3C validator