Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihmeetlem1N Structured version   Visualization version   GIF version

Theorem dihmeetlem1N 38425
Description: Isomorphism H of a conjunction. (Contributed by NM, 21-Mar-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dihglblem5a.b 𝐵 = (Base‘𝐾)
dihglblem5a.m = (meet‘𝐾)
dihglblem5a.h 𝐻 = (LHyp‘𝐾)
dihglblem5a.i 𝐼 = ((DIsoH‘𝐾)‘𝑊)
dihglblem5a.l = (le‘𝐾)
dihglblem5a.j = (join‘𝐾)
dihglblem5a.a 𝐴 = (Atoms‘𝐾)
dihglblem5a.p 𝑃 = ((oc‘𝐾)‘𝑊)
dihglblem5a.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dihglblem5a.r 𝑅 = ((trL‘𝐾)‘𝑊)
dihglblem5a.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dihglblem5a.g 𝐺 = (𝑇 (𝑃) = 𝑞)
dihglblem5a.o 0 = (𝑇 ↦ ( I ↾ 𝐵))
Assertion
Ref Expression
dihmeetlem1N (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝐼‘(𝑋 𝑌)) = ((𝐼𝑋) ∩ (𝐼𝑌)))
Distinct variable groups:   ,𝑞   ,𝑞,   𝐴,,𝑞   𝐵,,𝑞   ,𝐻,𝑞   𝐼,𝑞   ,𝐾,𝑞   𝑃,   𝑇,   ,𝑊,𝑞   𝑋,𝑞   𝑌,𝑞
Allowed substitution hints:   𝑃(𝑞)   𝑅(,𝑞)   𝑇(𝑞)   𝐸(,𝑞)   𝐺(,𝑞)   𝐼()   (,𝑞)   ()   𝑋()   𝑌()   0 (,𝑞)

Proof of Theorem dihmeetlem1N
Dummy variables 𝑓 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1l 1193 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → 𝐾 ∈ HL)
21hllatd 36499 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → 𝐾 ∈ Lat)
3 simp2l 1195 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → 𝑋𝐵)
4 simp3l 1197 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → 𝑌𝐵)
5 dihglblem5a.b . . . . . 6 𝐵 = (Base‘𝐾)
6 dihglblem5a.l . . . . . 6 = (le‘𝐾)
7 dihglblem5a.m . . . . . 6 = (meet‘𝐾)
85, 6, 7latmle1 17685 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) 𝑋)
92, 3, 4, 8syl3anc 1367 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝑋 𝑌) 𝑋)
10 simp1 1132 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
115, 7latmcl 17661 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
122, 3, 4, 11syl3anc 1367 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝑋 𝑌) ∈ 𝐵)
13 dihglblem5a.h . . . . . 6 𝐻 = (LHyp‘𝐾)
14 dihglblem5a.i . . . . . 6 𝐼 = ((DIsoH‘𝐾)‘𝑊)
155, 6, 13, 14dihord 38399 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 𝑌) ∈ 𝐵𝑋𝐵) → ((𝐼‘(𝑋 𝑌)) ⊆ (𝐼𝑋) ↔ (𝑋 𝑌) 𝑋))
1610, 12, 3, 15syl3anc 1367 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → ((𝐼‘(𝑋 𝑌)) ⊆ (𝐼𝑋) ↔ (𝑋 𝑌) 𝑋))
179, 16mpbird 259 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝐼‘(𝑋 𝑌)) ⊆ (𝐼𝑋))
185, 6, 7latmle2 17686 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) 𝑌)
192, 3, 4, 18syl3anc 1367 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝑋 𝑌) 𝑌)
205, 6, 13, 14dihord 38399 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 𝑌) ∈ 𝐵𝑌𝐵) → ((𝐼‘(𝑋 𝑌)) ⊆ (𝐼𝑌) ↔ (𝑋 𝑌) 𝑌))
2110, 12, 4, 20syl3anc 1367 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → ((𝐼‘(𝑋 𝑌)) ⊆ (𝐼𝑌) ↔ (𝑋 𝑌) 𝑌))
2219, 21mpbird 259 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝐼‘(𝑋 𝑌)) ⊆ (𝐼𝑌))
2317, 22ssind 4208 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝐼‘(𝑋 𝑌)) ⊆ ((𝐼𝑋) ∩ (𝐼𝑌)))
2413, 14dihvalrel 38414 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → Rel (𝐼𝑋))
25 relin1 5684 . . . . 5 (Rel (𝐼𝑋) → Rel ((𝐼𝑋) ∩ (𝐼𝑌)))
2624, 25syl 17 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → Rel ((𝐼𝑋) ∩ (𝐼𝑌)))
27263ad2ant1 1129 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → Rel ((𝐼𝑋) ∩ (𝐼𝑌)))
28 elin 4168 . . . 4 (⟨𝑓, 𝑠⟩ ∈ ((𝐼𝑋) ∩ (𝐼𝑌)) ↔ (⟨𝑓, 𝑠⟩ ∈ (𝐼𝑋) ∧ ⟨𝑓, 𝑠⟩ ∈ (𝐼𝑌)))
29 dihglblem5a.j . . . . . . 7 = (join‘𝐾)
30 dihglblem5a.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
315, 6, 29, 7, 30, 13lhpmcvr2 37159 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → ∃𝑞𝐴𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋))
32313adant3 1128 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → ∃𝑞𝐴𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋))
33 simpl1 1187 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
34 simpl2 1188 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋))) → (𝑋𝐵 ∧ ¬ 𝑋 𝑊))
35 simprl 769 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋))) → 𝑞𝐴)
36 simprrl 779 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋))) → ¬ 𝑞 𝑊)
3735, 36jca 514 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋))) → (𝑞𝐴 ∧ ¬ 𝑞 𝑊))
38 simprrr 780 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋))) → (𝑞 (𝑋 𝑊)) = 𝑋)
39 dihglblem5a.p . . . . . . . . 9 𝑃 = ((oc‘𝐾)‘𝑊)
40 dihglblem5a.t . . . . . . . . 9 𝑇 = ((LTrn‘𝐾)‘𝑊)
41 dihglblem5a.r . . . . . . . . 9 𝑅 = ((trL‘𝐾)‘𝑊)
42 dihglblem5a.e . . . . . . . . 9 𝐸 = ((TEndo‘𝐾)‘𝑊)
43 dihglblem5a.g . . . . . . . . 9 𝐺 = (𝑇 (𝑃) = 𝑞)
44 vex 3497 . . . . . . . . 9 𝑓 ∈ V
45 vex 3497 . . . . . . . . 9 𝑠 ∈ V
465, 6, 29, 7, 30, 13, 39, 40, 41, 42, 14, 43, 44, 45dihopelvalc 38384 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) → (⟨𝑓, 𝑠⟩ ∈ (𝐼𝑋) ↔ ((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐺))) 𝑋)))
4733, 34, 37, 38, 46syl112anc 1370 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋))) → (⟨𝑓, 𝑠⟩ ∈ (𝐼𝑋) ↔ ((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐺))) 𝑋)))
48 simpr 487 . . . . . . 7 (((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐺))) 𝑋) → (𝑅‘(𝑓(𝑠𝐺))) 𝑋)
4947, 48syl6bi 255 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋))) → (⟨𝑓, 𝑠⟩ ∈ (𝐼𝑋) → (𝑅‘(𝑓(𝑠𝐺))) 𝑋))
50 simpl3 1189 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋))) → (𝑌𝐵𝑌 𝑊))
51 dihglblem5a.o . . . . . . . . 9 0 = (𝑇 ↦ ( I ↾ 𝐵))
525, 6, 13, 40, 41, 51, 14dihopelvalbN 38373 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑌𝐵𝑌 𝑊)) → (⟨𝑓, 𝑠⟩ ∈ (𝐼𝑌) ↔ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 )))
5333, 50, 52syl2anc 586 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋))) → (⟨𝑓, 𝑠⟩ ∈ (𝐼𝑌) ↔ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 )))
5453biimpd 231 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋))) → (⟨𝑓, 𝑠⟩ ∈ (𝐼𝑌) → ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 )))
55 simprll 777 . . . . . . . . . 10 (((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 )) → 𝑓𝑇)
56553ad2ant3 1131 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → 𝑓𝑇)
57 simp3rr 1243 . . . . . . . . . . . . . . . . . 18 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → 𝑠 = 0 )
5857fveq1d 6671 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → (𝑠𝐺) = ( 0𝐺))
59 simp11 1199 . . . . . . . . . . . . . . . . . . 19 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
606, 30, 13, 39lhpocnel2 37154 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
6159, 60syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
62 simp2l 1195 . . . . . . . . . . . . . . . . . . 19 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → 𝑞𝐴)
63 simp2rl 1238 . . . . . . . . . . . . . . . . . . 19 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → ¬ 𝑞 𝑊)
646, 30, 13, 40, 43ltrniotacl 37714 . . . . . . . . . . . . . . . . . . 19 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑞𝐴 ∧ ¬ 𝑞 𝑊)) → 𝐺𝑇)
6559, 61, 62, 63, 64syl112anc 1370 . . . . . . . . . . . . . . . . . 18 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → 𝐺𝑇)
6651, 5tendo02 37922 . . . . . . . . . . . . . . . . . 18 (𝐺𝑇 → ( 0𝐺) = ( I ↾ 𝐵))
6765, 66syl 17 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → ( 0𝐺) = ( I ↾ 𝐵))
6858, 67eqtrd 2856 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → (𝑠𝐺) = ( I ↾ 𝐵))
6968cnveqd 5745 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → (𝑠𝐺) = ( I ↾ 𝐵))
70 cnvresid 6432 . . . . . . . . . . . . . . 15 ( I ↾ 𝐵) = ( I ↾ 𝐵)
7169, 70syl6eq 2872 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → (𝑠𝐺) = ( I ↾ 𝐵))
7271coeq2d 5732 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → (𝑓(𝑠𝐺)) = (𝑓 ∘ ( I ↾ 𝐵)))
735, 13, 40ltrn1o 37259 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇) → 𝑓:𝐵1-1-onto𝐵)
7459, 56, 73syl2anc 586 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → 𝑓:𝐵1-1-onto𝐵)
75 f1of 6614 . . . . . . . . . . . . . 14 (𝑓:𝐵1-1-onto𝐵𝑓:𝐵𝐵)
76 fcoi1 6551 . . . . . . . . . . . . . 14 (𝑓:𝐵𝐵 → (𝑓 ∘ ( I ↾ 𝐵)) = 𝑓)
7774, 75, 763syl 18 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → (𝑓 ∘ ( I ↾ 𝐵)) = 𝑓)
7872, 77eqtrd 2856 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → (𝑓(𝑠𝐺)) = 𝑓)
7978fveq2d 6673 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → (𝑅‘(𝑓(𝑠𝐺))) = (𝑅𝑓))
80 simp3l 1197 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → (𝑅‘(𝑓(𝑠𝐺))) 𝑋)
8179, 80eqbrtrrd 5089 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → (𝑅𝑓) 𝑋)
82 simprlr 778 . . . . . . . . . . 11 (((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 )) → (𝑅𝑓) 𝑌)
83823ad2ant3 1131 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → (𝑅𝑓) 𝑌)
84 simp11l 1280 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → 𝐾 ∈ HL)
8584hllatd 36499 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → 𝐾 ∈ Lat)
865, 13, 40, 41trlcl 37299 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇) → (𝑅𝑓) ∈ 𝐵)
8759, 56, 86syl2anc 586 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → (𝑅𝑓) ∈ 𝐵)
88 simp12l 1282 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → 𝑋𝐵)
89 simp13l 1284 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → 𝑌𝐵)
905, 6, 7latlem12 17687 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ ((𝑅𝑓) ∈ 𝐵𝑋𝐵𝑌𝐵)) → (((𝑅𝑓) 𝑋 ∧ (𝑅𝑓) 𝑌) ↔ (𝑅𝑓) (𝑋 𝑌)))
9185, 87, 88, 89, 90syl13anc 1368 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → (((𝑅𝑓) 𝑋 ∧ (𝑅𝑓) 𝑌) ↔ (𝑅𝑓) (𝑋 𝑌)))
9281, 83, 91mpbi2and 710 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → (𝑅𝑓) (𝑋 𝑌))
9356, 92jca 514 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → (𝑓𝑇 ∧ (𝑅𝑓) (𝑋 𝑌)))
9485, 88, 89, 11syl3anc 1367 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → (𝑋 𝑌) ∈ 𝐵)
95 simp11r 1281 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → 𝑊𝐻)
965, 13lhpbase 37133 . . . . . . . . . . 11 (𝑊𝐻𝑊𝐵)
9795, 96syl 17 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → 𝑊𝐵)
9885, 88, 89, 18syl3anc 1367 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → (𝑋 𝑌) 𝑌)
99 simp13r 1285 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → 𝑌 𝑊)
1005, 6, 85, 94, 89, 97, 98, 99lattrd 17667 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → (𝑋 𝑌) 𝑊)
1015, 6, 13, 40, 41, 51, 14dihopelvalbN 38373 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑋 𝑌) ∈ 𝐵 ∧ (𝑋 𝑌) 𝑊)) → (⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝑋 𝑌)) ↔ ((𝑓𝑇 ∧ (𝑅𝑓) (𝑋 𝑌)) ∧ 𝑠 = 0 )))
10259, 94, 100, 101syl12anc 834 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → (⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝑋 𝑌)) ↔ ((𝑓𝑇 ∧ (𝑅𝑓) (𝑋 𝑌)) ∧ 𝑠 = 0 )))
10393, 57, 102mpbir2and 711 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → ⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝑋 𝑌)))
1041033expia 1117 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋))) → (((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 )) → ⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝑋 𝑌))))
10549, 54, 104syl2and 609 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋))) → ((⟨𝑓, 𝑠⟩ ∈ (𝐼𝑋) ∧ ⟨𝑓, 𝑠⟩ ∈ (𝐼𝑌)) → ⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝑋 𝑌))))
10632, 105rexlimddv 3291 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → ((⟨𝑓, 𝑠⟩ ∈ (𝐼𝑋) ∧ ⟨𝑓, 𝑠⟩ ∈ (𝐼𝑌)) → ⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝑋 𝑌))))
10728, 106syl5bi 244 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (⟨𝑓, 𝑠⟩ ∈ ((𝐼𝑋) ∩ (𝐼𝑌)) → ⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝑋 𝑌))))
10827, 107relssdv 5660 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → ((𝐼𝑋) ∩ (𝐼𝑌)) ⊆ (𝐼‘(𝑋 𝑌)))
10923, 108eqssd 3983 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝐼‘(𝑋 𝑌)) = ((𝐼𝑋) ∩ (𝐼𝑌)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wrex 3139  cin 3934  wss 3935  cop 4572   class class class wbr 5065  cmpt 5145   I cid 5458  ccnv 5553  cres 5556  ccom 5558  Rel wrel 5559  wf 6350  1-1-ontowf1o 6353  cfv 6354  crio 7112  (class class class)co 7155  Basecbs 16482  lecple 16571  occoc 16572  joincjn 17553  meetcmee 17554  Latclat 17654  Atomscatm 36398  HLchlt 36485  LHypclh 37119  LTrncltrn 37236  trLctrl 37293  TEndoctendo 37887  DIsoHcdih 38363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-riotaBAD 36088
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-iin 4921  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-tpos 7891  df-undef 7938  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-oadd 8105  df-er 8288  df-map 8407  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-nn 11638  df-2 11699  df-3 11700  df-4 11701  df-5 11702  df-6 11703  df-n0 11897  df-z 11981  df-uz 12243  df-fz 12892  df-struct 16484  df-ndx 16485  df-slot 16486  df-base 16488  df-sets 16489  df-ress 16490  df-plusg 16577  df-mulr 16578  df-sca 16580  df-vsca 16581  df-0g 16714  df-proset 17537  df-poset 17555  df-plt 17567  df-lub 17583  df-glb 17584  df-join 17585  df-meet 17586  df-p0 17648  df-p1 17649  df-lat 17655  df-clat 17717  df-mgm 17851  df-sgrp 17900  df-mnd 17911  df-submnd 17956  df-grp 18105  df-minusg 18106  df-sbg 18107  df-subg 18275  df-cntz 18446  df-lsm 18760  df-cmn 18907  df-abl 18908  df-mgp 19239  df-ur 19251  df-ring 19298  df-oppr 19372  df-dvdsr 19390  df-unit 19391  df-invr 19421  df-dvr 19432  df-drng 19503  df-lmod 19635  df-lss 19703  df-lsp 19743  df-lvec 19874  df-oposet 36311  df-ol 36313  df-oml 36314  df-covers 36401  df-ats 36402  df-atl 36433  df-cvlat 36457  df-hlat 36486  df-llines 36633  df-lplanes 36634  df-lvols 36635  df-lines 36636  df-psubsp 36638  df-pmap 36639  df-padd 36931  df-lhyp 37123  df-laut 37124  df-ldil 37239  df-ltrn 37240  df-trl 37294  df-tendo 37890  df-edring 37892  df-disoa 38164  df-dvech 38214  df-dib 38274  df-dic 38308  df-dih 38364
This theorem is referenced by:  dihmeetbN  38438
  Copyright terms: Public domain W3C validator