Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihmeetlem3N Structured version   Visualization version   GIF version

Theorem dihmeetlem3N 38440
Description: Lemma for isomorphism H of a lattice meet. (Contributed by NM, 30-Mar-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dihmeetlem3.b 𝐵 = (Base‘𝐾)
dihmeetlem3.l = (le‘𝐾)
dihmeetlem3.j = (join‘𝐾)
dihmeetlem3.m = (meet‘𝐾)
dihmeetlem3.a 𝐴 = (Atoms‘𝐾)
dihmeetlem3.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
dihmeetlem3N ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌) 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑅 (𝑌 𝑊)) = 𝑌)) → 𝑄𝑅)

Proof of Theorem dihmeetlem3N
StepHypRef Expression
1 simp2lr 1237 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌) 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑅 (𝑌 𝑊)) = 𝑌)) → ¬ 𝑄 𝑊)
2 oveq1 7162 . . . . . . 7 (𝑄 = 𝑅 → (𝑄 (𝑌 𝑊)) = (𝑅 (𝑌 𝑊)))
3 simpr 487 . . . . . . 7 (((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑅 (𝑌 𝑊)) = 𝑌) → (𝑅 (𝑌 𝑊)) = 𝑌)
42, 3sylan9eqr 2878 . . . . . 6 ((((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑅 (𝑌 𝑊)) = 𝑌) ∧ 𝑄 = 𝑅) → (𝑄 (𝑌 𝑊)) = 𝑌)
5 dihmeetlem3.b . . . . . . . 8 𝐵 = (Base‘𝐾)
6 dihmeetlem3.l . . . . . . . 8 = (le‘𝐾)
7 simp11l 1280 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌) 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋) ∧ (𝑄 (𝑌 𝑊)) = 𝑌) → 𝐾 ∈ HL)
87hllatd 36499 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌) 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋) ∧ (𝑄 (𝑌 𝑊)) = 𝑌) → 𝐾 ∈ Lat)
9 simp2ll 1236 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌) 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋) ∧ (𝑄 (𝑌 𝑊)) = 𝑌) → 𝑄𝐴)
10 dihmeetlem3.a . . . . . . . . . 10 𝐴 = (Atoms‘𝐾)
115, 10atbase 36424 . . . . . . . . 9 (𝑄𝐴𝑄𝐵)
129, 11syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌) 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋) ∧ (𝑄 (𝑌 𝑊)) = 𝑌) → 𝑄𝐵)
13 simp12l 1282 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌) 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋) ∧ (𝑄 (𝑌 𝑊)) = 𝑌) → 𝑋𝐵)
14 simp12r 1283 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌) 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋) ∧ (𝑄 (𝑌 𝑊)) = 𝑌) → 𝑌𝐵)
15 dihmeetlem3.m . . . . . . . . . 10 = (meet‘𝐾)
165, 15latmcl 17661 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
178, 13, 14, 16syl3anc 1367 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌) 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋) ∧ (𝑄 (𝑌 𝑊)) = 𝑌) → (𝑋 𝑌) ∈ 𝐵)
18 simp11r 1281 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌) 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋) ∧ (𝑄 (𝑌 𝑊)) = 𝑌) → 𝑊𝐻)
19 dihmeetlem3.h . . . . . . . . . 10 𝐻 = (LHyp‘𝐾)
205, 19lhpbase 37133 . . . . . . . . 9 (𝑊𝐻𝑊𝐵)
2118, 20syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌) 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋) ∧ (𝑄 (𝑌 𝑊)) = 𝑌) → 𝑊𝐵)
225, 15latmcl 17661 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵) → (𝑋 𝑊) ∈ 𝐵)
238, 13, 21, 22syl3anc 1367 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌) 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋) ∧ (𝑄 (𝑌 𝑊)) = 𝑌) → (𝑋 𝑊) ∈ 𝐵)
24 dihmeetlem3.j . . . . . . . . . . . 12 = (join‘𝐾)
255, 6, 24latlej1 17669 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ 𝑄𝐵 ∧ (𝑋 𝑊) ∈ 𝐵) → 𝑄 (𝑄 (𝑋 𝑊)))
268, 12, 23, 25syl3anc 1367 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌) 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋) ∧ (𝑄 (𝑌 𝑊)) = 𝑌) → 𝑄 (𝑄 (𝑋 𝑊)))
27 simp2r 1196 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌) 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋) ∧ (𝑄 (𝑌 𝑊)) = 𝑌) → (𝑄 (𝑋 𝑊)) = 𝑋)
2826, 27breqtrd 5091 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌) 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋) ∧ (𝑄 (𝑌 𝑊)) = 𝑌) → 𝑄 𝑋)
295, 15latmcl 17661 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ 𝑌𝐵𝑊𝐵) → (𝑌 𝑊) ∈ 𝐵)
308, 14, 21, 29syl3anc 1367 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌) 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋) ∧ (𝑄 (𝑌 𝑊)) = 𝑌) → (𝑌 𝑊) ∈ 𝐵)
315, 6, 24latlej1 17669 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ 𝑄𝐵 ∧ (𝑌 𝑊) ∈ 𝐵) → 𝑄 (𝑄 (𝑌 𝑊)))
328, 12, 30, 31syl3anc 1367 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌) 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋) ∧ (𝑄 (𝑌 𝑊)) = 𝑌) → 𝑄 (𝑄 (𝑌 𝑊)))
33 simp3 1134 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌) 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋) ∧ (𝑄 (𝑌 𝑊)) = 𝑌) → (𝑄 (𝑌 𝑊)) = 𝑌)
3432, 33breqtrd 5091 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌) 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋) ∧ (𝑄 (𝑌 𝑊)) = 𝑌) → 𝑄 𝑌)
355, 6, 15latlem12 17687 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (𝑄𝐵𝑋𝐵𝑌𝐵)) → ((𝑄 𝑋𝑄 𝑌) ↔ 𝑄 (𝑋 𝑌)))
368, 12, 13, 14, 35syl13anc 1368 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌) 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋) ∧ (𝑄 (𝑌 𝑊)) = 𝑌) → ((𝑄 𝑋𝑄 𝑌) ↔ 𝑄 (𝑋 𝑌)))
3728, 34, 36mpbi2and 710 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌) 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋) ∧ (𝑄 (𝑌 𝑊)) = 𝑌) → 𝑄 (𝑋 𝑌))
38 simp13 1201 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌) 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋) ∧ (𝑄 (𝑌 𝑊)) = 𝑌) → (𝑋 𝑌) 𝑊)
395, 6, 8, 12, 17, 21, 37, 38lattrd 17667 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌) 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋) ∧ (𝑄 (𝑌 𝑊)) = 𝑌) → 𝑄 𝑊)
40393exp 1115 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌) 𝑊) → (((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋) → ((𝑄 (𝑌 𝑊)) = 𝑌𝑄 𝑊)))
414, 40syl7 74 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌) 𝑊) → (((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋) → ((((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑅 (𝑌 𝑊)) = 𝑌) ∧ 𝑄 = 𝑅) → 𝑄 𝑊)))
4241exp4a 434 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌) 𝑊) → (((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋) → (((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑅 (𝑌 𝑊)) = 𝑌) → (𝑄 = 𝑅𝑄 𝑊))))
43423imp 1107 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌) 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑅 (𝑌 𝑊)) = 𝑌)) → (𝑄 = 𝑅𝑄 𝑊))
4443necon3bd 3030 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌) 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑅 (𝑌 𝑊)) = 𝑌)) → (¬ 𝑄 𝑊𝑄𝑅))
451, 44mpd 15 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌) 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑅 (𝑌 𝑊)) = 𝑌)) → 𝑄𝑅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wne 3016   class class class wbr 5065  cfv 6354  (class class class)co 7155  Basecbs 16482  lecple 16571  joincjn 17553  meetcmee 17554  Latclat 17654  Atomscatm 36398  HLchlt 36485  LHypclh 37119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4838  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-poset 17555  df-lub 17583  df-glb 17584  df-join 17585  df-meet 17586  df-lat 17655  df-ats 36402  df-atl 36433  df-cvlat 36457  df-hlat 36486  df-lhyp 37123
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator