Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihordlem7 Structured version   Visualization version   GIF version

Theorem dihordlem7 35983
 Description: Part of proof of Lemma N of [Crawley] p. 122. Reverse ordering property. (Contributed by NM, 3-Mar-2014.)
Hypotheses
Ref Expression
dihordlem8.b 𝐵 = (Base‘𝐾)
dihordlem8.l = (le‘𝐾)
dihordlem8.a 𝐴 = (Atoms‘𝐾)
dihordlem8.h 𝐻 = (LHyp‘𝐾)
dihordlem8.p 𝑃 = ((oc‘𝐾)‘𝑊)
dihordlem8.o 𝑂 = (𝑇 ↦ ( I ↾ 𝐵))
dihordlem8.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dihordlem8.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dihordlem8.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dihordlem8.s + = (+g𝑈)
dihordlem8.g 𝐺 = (𝑇 (𝑃) = 𝑅)
Assertion
Ref Expression
dihordlem7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑠𝐸𝑔𝑇 ∧ ⟨𝑓, 𝑂⟩ = (⟨(𝑠𝐺), 𝑠+𝑔, 𝑂⟩))) → (𝑓 = ((𝑠𝐺) ∘ 𝑔) ∧ 𝑂 = 𝑠))
Distinct variable groups:   ,   𝐴,   𝐵,   ,𝐻   ,𝐾   𝑃,   𝑅,   𝑇,   ,𝑊
Allowed substitution hints:   𝐴(𝑓,𝑔,𝑠)   𝐵(𝑓,𝑔,𝑠)   𝑃(𝑓,𝑔,𝑠)   + (𝑓,𝑔,,𝑠)   𝑄(𝑓,𝑔,,𝑠)   𝑅(𝑓,𝑔,𝑠)   𝑇(𝑓,𝑔,𝑠)   𝑈(𝑓,𝑔,,𝑠)   𝐸(𝑓,𝑔,,𝑠)   𝐺(𝑓,𝑔,,𝑠)   𝐻(𝑓,𝑔,𝑠)   𝐾(𝑓,𝑔,𝑠)   (𝑓,𝑔,𝑠)   𝑂(𝑓,𝑔,,𝑠)   𝑊(𝑓,𝑔,𝑠)

Proof of Theorem dihordlem7
StepHypRef Expression
1 simp33 1097 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑠𝐸𝑔𝑇 ∧ ⟨𝑓, 𝑂⟩ = (⟨(𝑠𝐺), 𝑠+𝑔, 𝑂⟩))) → ⟨𝑓, 𝑂⟩ = (⟨(𝑠𝐺), 𝑠+𝑔, 𝑂⟩))
2 simp1 1059 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑠𝐸𝑔𝑇 ∧ ⟨𝑓, 𝑂⟩ = (⟨(𝑠𝐺), 𝑠+𝑔, 𝑂⟩))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3 simp2l 1085 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑠𝐸𝑔𝑇 ∧ ⟨𝑓, 𝑂⟩ = (⟨(𝑠𝐺), 𝑠+𝑔, 𝑂⟩))) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
4 simp2r 1086 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑠𝐸𝑔𝑇 ∧ ⟨𝑓, 𝑂⟩ = (⟨(𝑠𝐺), 𝑠+𝑔, 𝑂⟩))) → (𝑅𝐴 ∧ ¬ 𝑅 𝑊))
5 simp31 1095 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑠𝐸𝑔𝑇 ∧ ⟨𝑓, 𝑂⟩ = (⟨(𝑠𝐺), 𝑠+𝑔, 𝑂⟩))) → 𝑠𝐸)
6 simp32 1096 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑠𝐸𝑔𝑇 ∧ ⟨𝑓, 𝑂⟩ = (⟨(𝑠𝐺), 𝑠+𝑔, 𝑂⟩))) → 𝑔𝑇)
7 dihordlem8.b . . . . 5 𝐵 = (Base‘𝐾)
8 dihordlem8.l . . . . 5 = (le‘𝐾)
9 dihordlem8.a . . . . 5 𝐴 = (Atoms‘𝐾)
10 dihordlem8.h . . . . 5 𝐻 = (LHyp‘𝐾)
11 dihordlem8.p . . . . 5 𝑃 = ((oc‘𝐾)‘𝑊)
12 dihordlem8.o . . . . 5 𝑂 = (𝑇 ↦ ( I ↾ 𝐵))
13 dihordlem8.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
14 dihordlem8.e . . . . 5 𝐸 = ((TEndo‘𝐾)‘𝑊)
15 dihordlem8.u . . . . 5 𝑈 = ((DVecH‘𝐾)‘𝑊)
16 dihordlem8.s . . . . 5 + = (+g𝑈)
17 dihordlem8.g . . . . 5 𝐺 = (𝑇 (𝑃) = 𝑅)
187, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17dihordlem6 35982 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑠𝐸𝑔𝑇)) → (⟨(𝑠𝐺), 𝑠+𝑔, 𝑂⟩) = ⟨((𝑠𝐺) ∘ 𝑔), 𝑠⟩)
192, 3, 4, 5, 6, 18syl122anc 1332 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑠𝐸𝑔𝑇 ∧ ⟨𝑓, 𝑂⟩ = (⟨(𝑠𝐺), 𝑠+𝑔, 𝑂⟩))) → (⟨(𝑠𝐺), 𝑠+𝑔, 𝑂⟩) = ⟨((𝑠𝐺) ∘ 𝑔), 𝑠⟩)
201, 19eqtrd 2655 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑠𝐸𝑔𝑇 ∧ ⟨𝑓, 𝑂⟩ = (⟨(𝑠𝐺), 𝑠+𝑔, 𝑂⟩))) → ⟨𝑓, 𝑂⟩ = ⟨((𝑠𝐺) ∘ 𝑔), 𝑠⟩)
21 fvex 6158 . . . 4 (𝑠𝐺) ∈ V
22 vex 3189 . . . 4 𝑔 ∈ V
2321, 22coex 7065 . . 3 ((𝑠𝐺) ∘ 𝑔) ∈ V
24 vex 3189 . . 3 𝑠 ∈ V
2523, 24opth2 4909 . 2 (⟨𝑓, 𝑂⟩ = ⟨((𝑠𝐺) ∘ 𝑔), 𝑠⟩ ↔ (𝑓 = ((𝑠𝐺) ∘ 𝑔) ∧ 𝑂 = 𝑠))
2620, 25sylib 208 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑠𝐸𝑔𝑇 ∧ ⟨𝑓, 𝑂⟩ = (⟨(𝑠𝐺), 𝑠+𝑔, 𝑂⟩))) → (𝑓 = ((𝑠𝐺) ∘ 𝑔) ∧ 𝑂 = 𝑠))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 384   ∧ w3a 1036   = wceq 1480   ∈ wcel 1987  ⟨cop 4154   class class class wbr 4613   ↦ cmpt 4673   I cid 4984   ↾ cres 5076   ∘ ccom 5078  ‘cfv 5847  ℩crio 6564  (class class class)co 6604  Basecbs 15781  +gcplusg 15862  lecple 15869  occoc 15870  Atomscatm 34030  HLchlt 34117  LHypclh 34750  LTrncltrn 34867  TEndoctendo 35520  DVecHcdvh 35847 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-riotaBAD 33719 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-iin 4488  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-undef 7344  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-map 7804  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-n0 11237  df-z 11322  df-uz 11632  df-fz 12269  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-plusg 15875  df-mulr 15876  df-sca 15878  df-vsca 15879  df-preset 16849  df-poset 16867  df-plt 16879  df-lub 16895  df-glb 16896  df-join 16897  df-meet 16898  df-p0 16960  df-p1 16961  df-lat 16967  df-clat 17029  df-oposet 33943  df-ol 33945  df-oml 33946  df-covers 34033  df-ats 34034  df-atl 34065  df-cvlat 34089  df-hlat 34118  df-llines 34264  df-lplanes 34265  df-lvols 34266  df-lines 34267  df-psubsp 34269  df-pmap 34270  df-padd 34562  df-lhyp 34754  df-laut 34755  df-ldil 34870  df-ltrn 34871  df-trl 34926  df-tendo 35523  df-edring 35525  df-dvech 35848 This theorem is referenced by:  dihordlem7b  35984
 Copyright terms: Public domain W3C validator