Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihval Structured version   Visualization version   GIF version

Theorem dihval 38362
Description: Value of isomorphism H for a lattice 𝐾. Definition of isomorphism map in [Crawley] p. 122 line 3. (Contributed by NM, 3-Feb-2014.)
Hypotheses
Ref Expression
dihval.b 𝐵 = (Base‘𝐾)
dihval.l = (le‘𝐾)
dihval.j = (join‘𝐾)
dihval.m = (meet‘𝐾)
dihval.a 𝐴 = (Atoms‘𝐾)
dihval.h 𝐻 = (LHyp‘𝐾)
dihval.i 𝐼 = ((DIsoH‘𝐾)‘𝑊)
dihval.d 𝐷 = ((DIsoB‘𝐾)‘𝑊)
dihval.c 𝐶 = ((DIsoC‘𝐾)‘𝑊)
dihval.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dihval.s 𝑆 = (LSubSp‘𝑈)
dihval.p = (LSSum‘𝑈)
Assertion
Ref Expression
dihval (((𝐾𝑉𝑊𝐻) ∧ 𝑋𝐵) → (𝐼𝑋) = if(𝑋 𝑊, (𝐷𝑋), (𝑢𝑆𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑋 𝑊)))))))
Distinct variable groups:   𝐴,𝑞   𝑢,𝑞,𝐾   𝑢,𝑆   𝑊,𝑞,𝑢   𝑋,𝑞,𝑢
Allowed substitution hints:   𝐴(𝑢)   𝐵(𝑢,𝑞)   𝐶(𝑢,𝑞)   𝐷(𝑢,𝑞)   (𝑢,𝑞)   𝑆(𝑞)   𝑈(𝑢,𝑞)   𝐻(𝑢,𝑞)   𝐼(𝑢,𝑞)   (𝑢,𝑞)   (𝑢,𝑞)   (𝑢,𝑞)   𝑉(𝑢,𝑞)

Proof of Theorem dihval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dihval.b . . . 4 𝐵 = (Base‘𝐾)
2 dihval.l . . . 4 = (le‘𝐾)
3 dihval.j . . . 4 = (join‘𝐾)
4 dihval.m . . . 4 = (meet‘𝐾)
5 dihval.a . . . 4 𝐴 = (Atoms‘𝐾)
6 dihval.h . . . 4 𝐻 = (LHyp‘𝐾)
7 dihval.i . . . 4 𝐼 = ((DIsoH‘𝐾)‘𝑊)
8 dihval.d . . . 4 𝐷 = ((DIsoB‘𝐾)‘𝑊)
9 dihval.c . . . 4 𝐶 = ((DIsoC‘𝐾)‘𝑊)
10 dihval.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
11 dihval.s . . . 4 𝑆 = (LSubSp‘𝑈)
12 dihval.p . . . 4 = (LSSum‘𝑈)
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12dihfval 38361 . . 3 ((𝐾𝑉𝑊𝐻) → 𝐼 = (𝑥𝐵 ↦ if(𝑥 𝑊, (𝐷𝑥), (𝑢𝑆𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑥 𝑊)) = 𝑥) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑥 𝑊))))))))
1413fveq1d 6667 . 2 ((𝐾𝑉𝑊𝐻) → (𝐼𝑋) = ((𝑥𝐵 ↦ if(𝑥 𝑊, (𝐷𝑥), (𝑢𝑆𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑥 𝑊)) = 𝑥) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑥 𝑊)))))))‘𝑋))
15 breq1 5062 . . . 4 (𝑥 = 𝑋 → (𝑥 𝑊𝑋 𝑊))
16 fveq2 6665 . . . 4 (𝑥 = 𝑋 → (𝐷𝑥) = (𝐷𝑋))
17 oveq1 7157 . . . . . . . . . 10 (𝑥 = 𝑋 → (𝑥 𝑊) = (𝑋 𝑊))
1817oveq2d 7166 . . . . . . . . 9 (𝑥 = 𝑋 → (𝑞 (𝑥 𝑊)) = (𝑞 (𝑋 𝑊)))
19 id 22 . . . . . . . . 9 (𝑥 = 𝑋𝑥 = 𝑋)
2018, 19eqeq12d 2837 . . . . . . . 8 (𝑥 = 𝑋 → ((𝑞 (𝑥 𝑊)) = 𝑥 ↔ (𝑞 (𝑋 𝑊)) = 𝑋))
2120anbi2d 630 . . . . . . 7 (𝑥 = 𝑋 → ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑥 𝑊)) = 𝑥) ↔ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)))
22 fvoveq1 7173 . . . . . . . . 9 (𝑥 = 𝑋 → (𝐷‘(𝑥 𝑊)) = (𝐷‘(𝑋 𝑊)))
2322oveq2d 7166 . . . . . . . 8 (𝑥 = 𝑋 → ((𝐶𝑞) (𝐷‘(𝑥 𝑊))) = ((𝐶𝑞) (𝐷‘(𝑋 𝑊))))
2423eqeq2d 2832 . . . . . . 7 (𝑥 = 𝑋 → (𝑢 = ((𝐶𝑞) (𝐷‘(𝑥 𝑊))) ↔ 𝑢 = ((𝐶𝑞) (𝐷‘(𝑋 𝑊)))))
2521, 24imbi12d 347 . . . . . 6 (𝑥 = 𝑋 → (((¬ 𝑞 𝑊 ∧ (𝑞 (𝑥 𝑊)) = 𝑥) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑥 𝑊)))) ↔ ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑋 𝑊))))))
2625ralbidv 3197 . . . . 5 (𝑥 = 𝑋 → (∀𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑥 𝑊)) = 𝑥) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑥 𝑊)))) ↔ ∀𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑋 𝑊))))))
2726riotabidv 7110 . . . 4 (𝑥 = 𝑋 → (𝑢𝑆𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑥 𝑊)) = 𝑥) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑥 𝑊))))) = (𝑢𝑆𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑋 𝑊))))))
2815, 16, 27ifbieq12d 4494 . . 3 (𝑥 = 𝑋 → if(𝑥 𝑊, (𝐷𝑥), (𝑢𝑆𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑥 𝑊)) = 𝑥) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑥 𝑊)))))) = if(𝑋 𝑊, (𝐷𝑋), (𝑢𝑆𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑋 𝑊)))))))
29 eqid 2821 . . 3 (𝑥𝐵 ↦ if(𝑥 𝑊, (𝐷𝑥), (𝑢𝑆𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑥 𝑊)) = 𝑥) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑥 𝑊))))))) = (𝑥𝐵 ↦ if(𝑥 𝑊, (𝐷𝑥), (𝑢𝑆𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑥 𝑊)) = 𝑥) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑥 𝑊)))))))
30 fvex 6678 . . . 4 (𝐷𝑋) ∈ V
31 riotaex 7112 . . . 4 (𝑢𝑆𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑋 𝑊))))) ∈ V
3230, 31ifex 4515 . . 3 if(𝑋 𝑊, (𝐷𝑋), (𝑢𝑆𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑋 𝑊)))))) ∈ V
3328, 29, 32fvmpt 6763 . 2 (𝑋𝐵 → ((𝑥𝐵 ↦ if(𝑥 𝑊, (𝐷𝑥), (𝑢𝑆𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑥 𝑊)) = 𝑥) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑥 𝑊)))))))‘𝑋) = if(𝑋 𝑊, (𝐷𝑋), (𝑢𝑆𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑋 𝑊)))))))
3414, 33sylan9eq 2876 1 (((𝐾𝑉𝑊𝐻) ∧ 𝑋𝐵) → (𝐼𝑋) = if(𝑋 𝑊, (𝐷𝑋), (𝑢𝑆𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑋 𝑊)))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1533  wcel 2110  wral 3138  ifcif 4467   class class class wbr 5059  cmpt 5139  cfv 6350  crio 7107  (class class class)co 7150  Basecbs 16477  lecple 16566  joincjn 17548  meetcmee 17549  LSSumclsm 18753  LSubSpclss 19697  Atomscatm 36393  LHypclh 37114  DVecHcdvh 38208  DIsoBcdib 38268  DIsoCcdic 38302  DIsoHcdih 38358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pr 5322
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4833  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5455  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-dih 38359
This theorem is referenced by:  dihvalc  38363  dihvalb  38367
  Copyright terms: Public domain W3C validator