Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dilfsetN Structured version   Visualization version   GIF version

Theorem dilfsetN 37168
Description: The mapping from fiducial atom to set of dilations. (Contributed by NM, 30-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
dilset.a 𝐴 = (Atoms‘𝐾)
dilset.s 𝑆 = (PSubSp‘𝐾)
dilset.w 𝑊 = (WAtoms‘𝐾)
dilset.m 𝑀 = (PAut‘𝐾)
dilset.l 𝐿 = (Dil‘𝐾)
Assertion
Ref Expression
dilfsetN (𝐾𝐵𝐿 = (𝑑𝐴 ↦ {𝑓𝑀 ∣ ∀𝑥𝑆 (𝑥 ⊆ (𝑊𝑑) → (𝑓𝑥) = 𝑥)}))
Distinct variable groups:   𝐴,𝑑   𝑓,𝑑,𝑥,𝐾   𝑓,𝑀   𝑥,𝑆
Allowed substitution hints:   𝐴(𝑥,𝑓)   𝐵(𝑥,𝑓,𝑑)   𝑆(𝑓,𝑑)   𝐿(𝑥,𝑓,𝑑)   𝑀(𝑥,𝑑)   𝑊(𝑥,𝑓,𝑑)

Proof of Theorem dilfsetN
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elex 3510 . 2 (𝐾𝐵𝐾 ∈ V)
2 dilset.l . . 3 𝐿 = (Dil‘𝐾)
3 fveq2 6663 . . . . . 6 (𝑘 = 𝐾 → (Atoms‘𝑘) = (Atoms‘𝐾))
4 dilset.a . . . . . 6 𝐴 = (Atoms‘𝐾)
53, 4syl6eqr 2871 . . . . 5 (𝑘 = 𝐾 → (Atoms‘𝑘) = 𝐴)
6 fveq2 6663 . . . . . . 7 (𝑘 = 𝐾 → (PAut‘𝑘) = (PAut‘𝐾))
7 dilset.m . . . . . . 7 𝑀 = (PAut‘𝐾)
86, 7syl6eqr 2871 . . . . . 6 (𝑘 = 𝐾 → (PAut‘𝑘) = 𝑀)
9 fveq2 6663 . . . . . . . 8 (𝑘 = 𝐾 → (PSubSp‘𝑘) = (PSubSp‘𝐾))
10 dilset.s . . . . . . . 8 𝑆 = (PSubSp‘𝐾)
119, 10syl6eqr 2871 . . . . . . 7 (𝑘 = 𝐾 → (PSubSp‘𝑘) = 𝑆)
12 fveq2 6663 . . . . . . . . . . 11 (𝑘 = 𝐾 → (WAtoms‘𝑘) = (WAtoms‘𝐾))
13 dilset.w . . . . . . . . . . 11 𝑊 = (WAtoms‘𝐾)
1412, 13syl6eqr 2871 . . . . . . . . . 10 (𝑘 = 𝐾 → (WAtoms‘𝑘) = 𝑊)
1514fveq1d 6665 . . . . . . . . 9 (𝑘 = 𝐾 → ((WAtoms‘𝑘)‘𝑑) = (𝑊𝑑))
1615sseq2d 3996 . . . . . . . 8 (𝑘 = 𝐾 → (𝑥 ⊆ ((WAtoms‘𝑘)‘𝑑) ↔ 𝑥 ⊆ (𝑊𝑑)))
1716imbi1d 343 . . . . . . 7 (𝑘 = 𝐾 → ((𝑥 ⊆ ((WAtoms‘𝑘)‘𝑑) → (𝑓𝑥) = 𝑥) ↔ (𝑥 ⊆ (𝑊𝑑) → (𝑓𝑥) = 𝑥)))
1811, 17raleqbidv 3399 . . . . . 6 (𝑘 = 𝐾 → (∀𝑥 ∈ (PSubSp‘𝑘)(𝑥 ⊆ ((WAtoms‘𝑘)‘𝑑) → (𝑓𝑥) = 𝑥) ↔ ∀𝑥𝑆 (𝑥 ⊆ (𝑊𝑑) → (𝑓𝑥) = 𝑥)))
198, 18rabeqbidv 3483 . . . . 5 (𝑘 = 𝐾 → {𝑓 ∈ (PAut‘𝑘) ∣ ∀𝑥 ∈ (PSubSp‘𝑘)(𝑥 ⊆ ((WAtoms‘𝑘)‘𝑑) → (𝑓𝑥) = 𝑥)} = {𝑓𝑀 ∣ ∀𝑥𝑆 (𝑥 ⊆ (𝑊𝑑) → (𝑓𝑥) = 𝑥)})
205, 19mpteq12dv 5142 . . . 4 (𝑘 = 𝐾 → (𝑑 ∈ (Atoms‘𝑘) ↦ {𝑓 ∈ (PAut‘𝑘) ∣ ∀𝑥 ∈ (PSubSp‘𝑘)(𝑥 ⊆ ((WAtoms‘𝑘)‘𝑑) → (𝑓𝑥) = 𝑥)}) = (𝑑𝐴 ↦ {𝑓𝑀 ∣ ∀𝑥𝑆 (𝑥 ⊆ (𝑊𝑑) → (𝑓𝑥) = 𝑥)}))
21 df-dilN 37122 . . . 4 Dil = (𝑘 ∈ V ↦ (𝑑 ∈ (Atoms‘𝑘) ↦ {𝑓 ∈ (PAut‘𝑘) ∣ ∀𝑥 ∈ (PSubSp‘𝑘)(𝑥 ⊆ ((WAtoms‘𝑘)‘𝑑) → (𝑓𝑥) = 𝑥)}))
2220, 21, 4mptfvmpt 6981 . . 3 (𝐾 ∈ V → (Dil‘𝐾) = (𝑑𝐴 ↦ {𝑓𝑀 ∣ ∀𝑥𝑆 (𝑥 ⊆ (𝑊𝑑) → (𝑓𝑥) = 𝑥)}))
232, 22syl5eq 2865 . 2 (𝐾 ∈ V → 𝐿 = (𝑑𝐴 ↦ {𝑓𝑀 ∣ ∀𝑥𝑆 (𝑥 ⊆ (𝑊𝑑) → (𝑓𝑥) = 𝑥)}))
241, 23syl 17 1 (𝐾𝐵𝐿 = (𝑑𝐴 ↦ {𝑓𝑀 ∣ ∀𝑥𝑆 (𝑥 ⊆ (𝑊𝑑) → (𝑓𝑥) = 𝑥)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1528  wcel 2105  wral 3135  {crab 3139  Vcvv 3492  wss 3933  cmpt 5137  cfv 6348  Atomscatm 36279  PSubSpcpsubsp 36512  WAtomscwpointsN 37002  PAutcpautN 37003  DilcdilN 37118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pr 5320
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-dilN 37122
This theorem is referenced by:  dilsetN  37169
  Copyright terms: Public domain W3C validator