MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dip0r Structured version   Visualization version   GIF version

Theorem dip0r 28496
Description: Inner product with a zero second argument. (Contributed by NM, 5-Feb-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
dip0r.1 𝑋 = (BaseSet‘𝑈)
dip0r.5 𝑍 = (0vec𝑈)
dip0r.7 𝑃 = (·𝑖OLD𝑈)
Assertion
Ref Expression
dip0r ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴𝑃𝑍) = 0)

Proof of Theorem dip0r
StepHypRef Expression
1 dip0r.1 . . . . 5 𝑋 = (BaseSet‘𝑈)
2 dip0r.5 . . . . 5 𝑍 = (0vec𝑈)
31, 2nvzcl 28413 . . . 4 (𝑈 ∈ NrmCVec → 𝑍𝑋)
43adantr 483 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → 𝑍𝑋)
5 eqid 2823 . . . 4 ( +𝑣𝑈) = ( +𝑣𝑈)
6 eqid 2823 . . . 4 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
7 eqid 2823 . . . 4 (normCV𝑈) = (normCV𝑈)
8 dip0r.7 . . . 4 𝑃 = (·𝑖OLD𝑈)
91, 5, 6, 7, 8ipval2 28486 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝑍𝑋) → (𝐴𝑃𝑍) = ((((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝑍))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝑍)))↑2)) + (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝑍)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝑍)))↑2)))) / 4))
104, 9mpd3an3 1458 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴𝑃𝑍) = ((((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝑍))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝑍)))↑2)) + (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝑍)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝑍)))↑2)))) / 4))
11 neg1cn 11754 . . . . . . . . . . . . 13 -1 ∈ ℂ
126, 2nvsz 28417 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ) → (-1( ·𝑠OLD𝑈)𝑍) = 𝑍)
1311, 12mpan2 689 . . . . . . . . . . . 12 (𝑈 ∈ NrmCVec → (-1( ·𝑠OLD𝑈)𝑍) = 𝑍)
1413adantr 483 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (-1( ·𝑠OLD𝑈)𝑍) = 𝑍)
1514oveq2d 7174 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝑍)) = (𝐴( +𝑣𝑈)𝑍))
1615fveq2d 6676 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝑍))) = ((normCV𝑈)‘(𝐴( +𝑣𝑈)𝑍)))
1716oveq1d 7173 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝑍)))↑2) = (((normCV𝑈)‘(𝐴( +𝑣𝑈)𝑍))↑2))
1817oveq2d 7174 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝑍))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝑍)))↑2)) = ((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝑍))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)𝑍))↑2)))
191, 5, 6, 7, 8ipval2lem3 28484 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝑍𝑋) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)𝑍))↑2) ∈ ℝ)
204, 19mpd3an3 1458 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)𝑍))↑2) ∈ ℝ)
2120recnd 10671 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)𝑍))↑2) ∈ ℂ)
2221subidd 10987 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝑍))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)𝑍))↑2)) = 0)
2318, 22eqtrd 2858 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝑍))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝑍)))↑2)) = 0)
24 negicn 10889 . . . . . . . . . . . . . . 15 -i ∈ ℂ
256, 2nvsz 28417 . . . . . . . . . . . . . . 15 ((𝑈 ∈ NrmCVec ∧ -i ∈ ℂ) → (-i( ·𝑠OLD𝑈)𝑍) = 𝑍)
2624, 25mpan2 689 . . . . . . . . . . . . . 14 (𝑈 ∈ NrmCVec → (-i( ·𝑠OLD𝑈)𝑍) = 𝑍)
27 ax-icn 10598 . . . . . . . . . . . . . . 15 i ∈ ℂ
286, 2nvsz 28417 . . . . . . . . . . . . . . 15 ((𝑈 ∈ NrmCVec ∧ i ∈ ℂ) → (i( ·𝑠OLD𝑈)𝑍) = 𝑍)
2927, 28mpan2 689 . . . . . . . . . . . . . 14 (𝑈 ∈ NrmCVec → (i( ·𝑠OLD𝑈)𝑍) = 𝑍)
3026, 29eqtr4d 2861 . . . . . . . . . . . . 13 (𝑈 ∈ NrmCVec → (-i( ·𝑠OLD𝑈)𝑍) = (i( ·𝑠OLD𝑈)𝑍))
3130adantr 483 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (-i( ·𝑠OLD𝑈)𝑍) = (i( ·𝑠OLD𝑈)𝑍))
3231oveq2d 7174 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝑍)) = (𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝑍)))
3332fveq2d 6676 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝑍))) = ((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝑍))))
3433oveq1d 7173 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝑍)))↑2) = (((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝑍)))↑2))
3534oveq2d 7174 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝑍)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝑍)))↑2)) = ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝑍)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝑍)))↑2)))
361, 5, 6, 7, 8ipval2lem4 28485 . . . . . . . . . . 11 (((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝑍𝑋) ∧ i ∈ ℂ) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝑍)))↑2) ∈ ℂ)
3727, 36mpan2 689 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝑍𝑋) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝑍)))↑2) ∈ ℂ)
384, 37mpd3an3 1458 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝑍)))↑2) ∈ ℂ)
3938subidd 10987 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝑍)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝑍)))↑2)) = 0)
4035, 39eqtrd 2858 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝑍)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝑍)))↑2)) = 0)
4140oveq2d 7174 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝑍)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝑍)))↑2))) = (i · 0))
4223, 41oveq12d 7176 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝑍))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝑍)))↑2)) + (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝑍)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝑍)))↑2)))) = (0 + (i · 0)))
43 it0e0 11862 . . . . . . 7 (i · 0) = 0
4443oveq2i 7169 . . . . . 6 (0 + (i · 0)) = (0 + 0)
45 00id 10817 . . . . . 6 (0 + 0) = 0
4644, 45eqtri 2846 . . . . 5 (0 + (i · 0)) = 0
4742, 46syl6eq 2874 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝑍))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝑍)))↑2)) + (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝑍)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝑍)))↑2)))) = 0)
4847oveq1d 7173 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝑍))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝑍)))↑2)) + (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝑍)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝑍)))↑2)))) / 4) = (0 / 4))
49 4cn 11725 . . . 4 4 ∈ ℂ
50 4ne0 11748 . . . 4 4 ≠ 0
5149, 50div0i 11376 . . 3 (0 / 4) = 0
5248, 51syl6eq 2874 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝑍))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝑍)))↑2)) + (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝑍)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝑍)))↑2)))) / 4) = 0)
5310, 52eqtrd 2858 1 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴𝑃𝑍) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  cfv 6357  (class class class)co 7158  cc 10537  cr 10538  0cc0 10539  1c1 10540  ici 10541   + caddc 10542   · cmul 10544  cmin 10872  -cneg 10873   / cdiv 11299  2c2 11695  4c4 11697  cexp 13432  NrmCVeccnv 28363   +𝑣 cpv 28364  BaseSetcba 28365   ·𝑠OLD cns 28366  0veccn0v 28367  normCVcnmcv 28369  ·𝑖OLDcdip 28479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-sup 8908  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-fz 12896  df-fzo 13037  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-clim 14847  df-sum 15045  df-grpo 28272  df-gid 28273  df-ginv 28274  df-ablo 28324  df-vc 28338  df-nv 28371  df-va 28374  df-ba 28375  df-sm 28376  df-0v 28377  df-nmcv 28379  df-dip 28480
This theorem is referenced by:  dip0l  28497  siii  28632
  Copyright terms: Public domain W3C validator