MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dip0r Structured version   Visualization version   GIF version

Theorem dip0r 27421
Description: Inner product with a zero second argument. (Contributed by NM, 5-Feb-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
dip0r.1 𝑋 = (BaseSet‘𝑈)
dip0r.5 𝑍 = (0vec𝑈)
dip0r.7 𝑃 = (·𝑖OLD𝑈)
Assertion
Ref Expression
dip0r ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴𝑃𝑍) = 0)

Proof of Theorem dip0r
StepHypRef Expression
1 dip0r.1 . . . . 5 𝑋 = (BaseSet‘𝑈)
2 dip0r.5 . . . . 5 𝑍 = (0vec𝑈)
31, 2nvzcl 27338 . . . 4 (𝑈 ∈ NrmCVec → 𝑍𝑋)
43adantr 481 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → 𝑍𝑋)
5 eqid 2621 . . . 4 ( +𝑣𝑈) = ( +𝑣𝑈)
6 eqid 2621 . . . 4 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
7 eqid 2621 . . . 4 (normCV𝑈) = (normCV𝑈)
8 dip0r.7 . . . 4 𝑃 = (·𝑖OLD𝑈)
91, 5, 6, 7, 8ipval2 27411 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝑍𝑋) → (𝐴𝑃𝑍) = ((((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝑍))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝑍)))↑2)) + (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝑍)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝑍)))↑2)))) / 4))
104, 9mpd3an3 1422 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴𝑃𝑍) = ((((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝑍))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝑍)))↑2)) + (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝑍)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝑍)))↑2)))) / 4))
11 neg1cn 11068 . . . . . . . . . . . . 13 -1 ∈ ℂ
126, 2nvsz 27342 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ) → (-1( ·𝑠OLD𝑈)𝑍) = 𝑍)
1311, 12mpan2 706 . . . . . . . . . . . 12 (𝑈 ∈ NrmCVec → (-1( ·𝑠OLD𝑈)𝑍) = 𝑍)
1413adantr 481 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (-1( ·𝑠OLD𝑈)𝑍) = 𝑍)
1514oveq2d 6620 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝑍)) = (𝐴( +𝑣𝑈)𝑍))
1615fveq2d 6152 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝑍))) = ((normCV𝑈)‘(𝐴( +𝑣𝑈)𝑍)))
1716oveq1d 6619 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝑍)))↑2) = (((normCV𝑈)‘(𝐴( +𝑣𝑈)𝑍))↑2))
1817oveq2d 6620 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝑍))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝑍)))↑2)) = ((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝑍))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)𝑍))↑2)))
191, 5, 6, 7, 8ipval2lem3 27409 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝑍𝑋) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)𝑍))↑2) ∈ ℝ)
204, 19mpd3an3 1422 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)𝑍))↑2) ∈ ℝ)
2120recnd 10012 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)𝑍))↑2) ∈ ℂ)
2221subidd 10324 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝑍))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)𝑍))↑2)) = 0)
2318, 22eqtrd 2655 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝑍))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝑍)))↑2)) = 0)
24 negicn 10226 . . . . . . . . . . . . . . 15 -i ∈ ℂ
256, 2nvsz 27342 . . . . . . . . . . . . . . 15 ((𝑈 ∈ NrmCVec ∧ -i ∈ ℂ) → (-i( ·𝑠OLD𝑈)𝑍) = 𝑍)
2624, 25mpan2 706 . . . . . . . . . . . . . 14 (𝑈 ∈ NrmCVec → (-i( ·𝑠OLD𝑈)𝑍) = 𝑍)
27 ax-icn 9939 . . . . . . . . . . . . . . 15 i ∈ ℂ
286, 2nvsz 27342 . . . . . . . . . . . . . . 15 ((𝑈 ∈ NrmCVec ∧ i ∈ ℂ) → (i( ·𝑠OLD𝑈)𝑍) = 𝑍)
2927, 28mpan2 706 . . . . . . . . . . . . . 14 (𝑈 ∈ NrmCVec → (i( ·𝑠OLD𝑈)𝑍) = 𝑍)
3026, 29eqtr4d 2658 . . . . . . . . . . . . 13 (𝑈 ∈ NrmCVec → (-i( ·𝑠OLD𝑈)𝑍) = (i( ·𝑠OLD𝑈)𝑍))
3130adantr 481 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (-i( ·𝑠OLD𝑈)𝑍) = (i( ·𝑠OLD𝑈)𝑍))
3231oveq2d 6620 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝑍)) = (𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝑍)))
3332fveq2d 6152 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝑍))) = ((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝑍))))
3433oveq1d 6619 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝑍)))↑2) = (((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝑍)))↑2))
3534oveq2d 6620 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝑍)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝑍)))↑2)) = ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝑍)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝑍)))↑2)))
361, 5, 6, 7, 8ipval2lem4 27410 . . . . . . . . . . 11 (((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝑍𝑋) ∧ i ∈ ℂ) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝑍)))↑2) ∈ ℂ)
3727, 36mpan2 706 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝑍𝑋) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝑍)))↑2) ∈ ℂ)
384, 37mpd3an3 1422 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝑍)))↑2) ∈ ℂ)
3938subidd 10324 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝑍)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝑍)))↑2)) = 0)
4035, 39eqtrd 2655 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝑍)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝑍)))↑2)) = 0)
4140oveq2d 6620 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝑍)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝑍)))↑2))) = (i · 0))
4223, 41oveq12d 6622 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝑍))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝑍)))↑2)) + (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝑍)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝑍)))↑2)))) = (0 + (i · 0)))
43 it0e0 11198 . . . . . . 7 (i · 0) = 0
4443oveq2i 6615 . . . . . 6 (0 + (i · 0)) = (0 + 0)
45 00id 10155 . . . . . 6 (0 + 0) = 0
4644, 45eqtri 2643 . . . . 5 (0 + (i · 0)) = 0
4742, 46syl6eq 2671 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝑍))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝑍)))↑2)) + (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝑍)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝑍)))↑2)))) = 0)
4847oveq1d 6619 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝑍))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝑍)))↑2)) + (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝑍)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝑍)))↑2)))) / 4) = (0 / 4))
49 4cn 11042 . . . 4 4 ∈ ℂ
50 4ne0 11061 . . . 4 4 ≠ 0
5149, 50div0i 10703 . . 3 (0 / 4) = 0
5248, 51syl6eq 2671 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝑍))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝑍)))↑2)) + (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝑍)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝑍)))↑2)))) / 4) = 0)
5310, 52eqtrd 2655 1 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴𝑃𝑍) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1987  cfv 5847  (class class class)co 6604  cc 9878  cr 9879  0cc0 9880  1c1 9881  ici 9882   + caddc 9883   · cmul 9885  cmin 10210  -cneg 10211   / cdiv 10628  2c2 11014  4c4 11016  cexp 12800  NrmCVeccnv 27288   +𝑣 cpv 27289  BaseSetcba 27290   ·𝑠OLD cns 27291  0veccn0v 27292  normCVcnmcv 27294  ·𝑖OLDcdip 27404
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-sup 8292  df-oi 8359  df-card 8709  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-n0 11237  df-z 11322  df-uz 11632  df-rp 11777  df-fz 12269  df-fzo 12407  df-seq 12742  df-exp 12801  df-hash 13058  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-clim 14153  df-sum 14351  df-grpo 27196  df-gid 27197  df-ginv 27198  df-ablo 27248  df-vc 27263  df-nv 27296  df-va 27299  df-ba 27300  df-sm 27301  df-0v 27302  df-nmcv 27304  df-dip 27405
This theorem is referenced by:  dip0l  27422  siii  27557
  Copyright terms: Public domain W3C validator