MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dipcn Structured version   Visualization version   GIF version

Theorem dipcn 27703
Description: Inner product is jointly continuous in both arguments. (Contributed by NM, 21-Aug-2007.) (Revised by Mario Carneiro, 10-Sep-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
dipcn.p 𝑃 = (·𝑖OLD𝑈)
dipcn.c 𝐶 = (IndMet‘𝑈)
dipcn.j 𝐽 = (MetOpen‘𝐶)
dipcn.k 𝐾 = (TopOpen‘ℂfld)
Assertion
Ref Expression
dipcn (𝑈 ∈ NrmCVec → 𝑃 ∈ ((𝐽 ×t 𝐽) Cn 𝐾))

Proof of Theorem dipcn
Dummy variables 𝑥 𝑘 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2651 . . 3 (BaseSet‘𝑈) = (BaseSet‘𝑈)
2 eqid 2651 . . 3 ( +𝑣𝑈) = ( +𝑣𝑈)
3 eqid 2651 . . 3 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
4 eqid 2651 . . 3 (normCV𝑈) = (normCV𝑈)
5 dipcn.p . . 3 𝑃 = (·𝑖OLD𝑈)
61, 2, 3, 4, 5dipfval 27685 . 2 (𝑈 ∈ NrmCVec → 𝑃 = (𝑥 ∈ (BaseSet‘𝑈), 𝑦 ∈ (BaseSet‘𝑈) ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑈)‘(𝑥( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝑦)))↑2)) / 4)))
7 dipcn.c . . . . 5 𝐶 = (IndMet‘𝑈)
81, 7imsxmet 27675 . . . 4 (𝑈 ∈ NrmCVec → 𝐶 ∈ (∞Met‘(BaseSet‘𝑈)))
9 dipcn.j . . . . 5 𝐽 = (MetOpen‘𝐶)
109mopntopon 22291 . . . 4 (𝐶 ∈ (∞Met‘(BaseSet‘𝑈)) → 𝐽 ∈ (TopOn‘(BaseSet‘𝑈)))
118, 10syl 17 . . 3 (𝑈 ∈ NrmCVec → 𝐽 ∈ (TopOn‘(BaseSet‘𝑈)))
12 dipcn.k . . . 4 𝐾 = (TopOpen‘ℂfld)
13 fzfid 12812 . . . 4 (𝑈 ∈ NrmCVec → (1...4) ∈ Fin)
1411adantr 480 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → 𝐽 ∈ (TopOn‘(BaseSet‘𝑈)))
1512cnfldtopon 22633 . . . . . . 7 𝐾 ∈ (TopOn‘ℂ)
1615a1i 11 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → 𝐾 ∈ (TopOn‘ℂ))
17 ax-icn 10033 . . . . . . 7 i ∈ ℂ
18 elfznn 12408 . . . . . . . . 9 (𝑘 ∈ (1...4) → 𝑘 ∈ ℕ)
1918adantl 481 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → 𝑘 ∈ ℕ)
2019nnnn0d 11389 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → 𝑘 ∈ ℕ0)
21 expcl 12918 . . . . . . 7 ((i ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (i↑𝑘) ∈ ℂ)
2217, 20, 21sylancr 696 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → (i↑𝑘) ∈ ℂ)
2314, 14, 16, 22cnmpt2c 21521 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → (𝑥 ∈ (BaseSet‘𝑈), 𝑦 ∈ (BaseSet‘𝑈) ↦ (i↑𝑘)) ∈ ((𝐽 ×t 𝐽) Cn 𝐾))
2414, 14cnmpt1st 21519 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → (𝑥 ∈ (BaseSet‘𝑈), 𝑦 ∈ (BaseSet‘𝑈) ↦ 𝑥) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
2514, 14cnmpt2nd 21520 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → (𝑥 ∈ (BaseSet‘𝑈), 𝑦 ∈ (BaseSet‘𝑈) ↦ 𝑦) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
267, 9, 3, 12smcn 27681 . . . . . . . . . 10 (𝑈 ∈ NrmCVec → ( ·𝑠OLD𝑈) ∈ ((𝐾 ×t 𝐽) Cn 𝐽))
2726adantr 480 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → ( ·𝑠OLD𝑈) ∈ ((𝐾 ×t 𝐽) Cn 𝐽))
2814, 14, 23, 25, 27cnmpt22f 21526 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → (𝑥 ∈ (BaseSet‘𝑈), 𝑦 ∈ (BaseSet‘𝑈) ↦ ((i↑𝑘)( ·𝑠OLD𝑈)𝑦)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
297, 9, 2vacn 27677 . . . . . . . . 9 (𝑈 ∈ NrmCVec → ( +𝑣𝑈) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
3029adantr 480 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → ( +𝑣𝑈) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
3114, 14, 24, 28, 30cnmpt22f 21526 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → (𝑥 ∈ (BaseSet‘𝑈), 𝑦 ∈ (BaseSet‘𝑈) ↦ (𝑥( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝑦))) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
324, 7, 9, 12nmcnc 27679 . . . . . . . 8 (𝑈 ∈ NrmCVec → (normCV𝑈) ∈ (𝐽 Cn 𝐾))
3332adantr 480 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → (normCV𝑈) ∈ (𝐽 Cn 𝐾))
3414, 14, 31, 33cnmpt21f 21523 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → (𝑥 ∈ (BaseSet‘𝑈), 𝑦 ∈ (BaseSet‘𝑈) ↦ ((normCV𝑈)‘(𝑥( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝑦)))) ∈ ((𝐽 ×t 𝐽) Cn 𝐾))
3512sqcn 22724 . . . . . . 7 (𝑧 ∈ ℂ ↦ (𝑧↑2)) ∈ (𝐾 Cn 𝐾)
3635a1i 11 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → (𝑧 ∈ ℂ ↦ (𝑧↑2)) ∈ (𝐾 Cn 𝐾))
37 oveq1 6697 . . . . . 6 (𝑧 = ((normCV𝑈)‘(𝑥( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝑦))) → (𝑧↑2) = (((normCV𝑈)‘(𝑥( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝑦)))↑2))
3814, 14, 34, 16, 36, 37cnmpt21 21522 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → (𝑥 ∈ (BaseSet‘𝑈), 𝑦 ∈ (BaseSet‘𝑈) ↦ (((normCV𝑈)‘(𝑥( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝑦)))↑2)) ∈ ((𝐽 ×t 𝐽) Cn 𝐾))
3912mulcn 22717 . . . . . 6 · ∈ ((𝐾 ×t 𝐾) Cn 𝐾)
4039a1i 11 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → · ∈ ((𝐾 ×t 𝐾) Cn 𝐾))
4114, 14, 23, 38, 40cnmpt22f 21526 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → (𝑥 ∈ (BaseSet‘𝑈), 𝑦 ∈ (BaseSet‘𝑈) ↦ ((i↑𝑘) · (((normCV𝑈)‘(𝑥( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝑦)))↑2))) ∈ ((𝐽 ×t 𝐽) Cn 𝐾))
4212, 11, 13, 11, 41fsum2cn 22721 . . 3 (𝑈 ∈ NrmCVec → (𝑥 ∈ (BaseSet‘𝑈), 𝑦 ∈ (BaseSet‘𝑈) ↦ Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑈)‘(𝑥( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝑦)))↑2))) ∈ ((𝐽 ×t 𝐽) Cn 𝐾))
4315a1i 11 . . 3 (𝑈 ∈ NrmCVec → 𝐾 ∈ (TopOn‘ℂ))
44 4cn 11136 . . . . 5 4 ∈ ℂ
45 4ne0 11155 . . . . 5 4 ≠ 0
4612divccn 22723 . . . . 5 ((4 ∈ ℂ ∧ 4 ≠ 0) → (𝑧 ∈ ℂ ↦ (𝑧 / 4)) ∈ (𝐾 Cn 𝐾))
4744, 45, 46mp2an 708 . . . 4 (𝑧 ∈ ℂ ↦ (𝑧 / 4)) ∈ (𝐾 Cn 𝐾)
4847a1i 11 . . 3 (𝑈 ∈ NrmCVec → (𝑧 ∈ ℂ ↦ (𝑧 / 4)) ∈ (𝐾 Cn 𝐾))
49 oveq1 6697 . . 3 (𝑧 = Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑈)‘(𝑥( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝑦)))↑2)) → (𝑧 / 4) = (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑈)‘(𝑥( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝑦)))↑2)) / 4))
5011, 11, 42, 43, 48, 49cnmpt21 21522 . 2 (𝑈 ∈ NrmCVec → (𝑥 ∈ (BaseSet‘𝑈), 𝑦 ∈ (BaseSet‘𝑈) ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑈)‘(𝑥( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝑦)))↑2)) / 4)) ∈ ((𝐽 ×t 𝐽) Cn 𝐾))
516, 50eqeltrd 2730 1 (𝑈 ∈ NrmCVec → 𝑃 ∈ ((𝐽 ×t 𝐽) Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1523  wcel 2030  wne 2823  cmpt 4762  cfv 5926  (class class class)co 6690  cmpt2 6692  cc 9972  0cc0 9974  1c1 9975  ici 9976   · cmul 9979   / cdiv 10722  cn 11058  2c2 11108  4c4 11110  0cn0 11330  ...cfz 12364  cexp 12900  Σcsu 14460  TopOpenctopn 16129  ∞Metcxmt 19779  MetOpencmopn 19784  fldccnfld 19794  TopOnctopon 20763   Cn ccn 21076   ×t ctx 21411  NrmCVeccnv 27567   +𝑣 cpv 27568  BaseSetcba 27569   ·𝑠OLD cns 27570  normCVcnmcv 27573  IndMetcims 27574  ·𝑖OLDcdip 27683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053  ax-mulf 10054
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-fi 8358  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-ioo 12217  df-icc 12220  df-fz 12365  df-fzo 12505  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263  df-sum 14461  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-starv 16003  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-hom 16013  df-cco 16014  df-rest 16130  df-topn 16131  df-0g 16149  df-gsum 16150  df-topgen 16151  df-pt 16152  df-prds 16155  df-xrs 16209  df-qtop 16214  df-imas 16215  df-xps 16217  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-submnd 17383  df-mulg 17588  df-cntz 17796  df-cmn 18241  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-cnfld 19795  df-top 20747  df-topon 20764  df-topsp 20785  df-bases 20798  df-cn 21079  df-cnp 21080  df-tx 21413  df-hmeo 21606  df-xms 22172  df-ms 22173  df-tms 22174  df-grpo 27475  df-gid 27476  df-ginv 27477  df-gdiv 27478  df-ablo 27527  df-vc 27542  df-nv 27575  df-va 27578  df-ba 27579  df-sm 27580  df-0v 27581  df-vs 27582  df-nmcv 27583  df-ims 27584  df-dip 27684
This theorem is referenced by:  ipasslem7  27819  occllem  28290
  Copyright terms: Public domain W3C validator