MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dirdm Structured version   Visualization version   GIF version

Theorem dirdm 17838
Description: A direction's domain is equal to its field. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 22-Nov-2013.)
Assertion
Ref Expression
dirdm (𝑅 ∈ DirRel → dom 𝑅 = 𝑅)

Proof of Theorem dirdm
StepHypRef Expression
1 ssun1 4147 . . . 4 dom 𝑅 ⊆ (dom 𝑅 ∪ ran 𝑅)
2 dmrnssfld 5835 . . . 4 (dom 𝑅 ∪ ran 𝑅) ⊆ 𝑅
31, 2sstri 3975 . . 3 dom 𝑅 𝑅
43a1i 11 . 2 (𝑅 ∈ DirRel → dom 𝑅 𝑅)
5 dmresi 5915 . . 3 dom ( I ↾ 𝑅) = 𝑅
6 eqid 2821 . . . . . . 7 𝑅 = 𝑅
76isdir 17836 . . . . . 6 (𝑅 ∈ DirRel → (𝑅 ∈ DirRel ↔ ((Rel 𝑅 ∧ ( I ↾ 𝑅) ⊆ 𝑅) ∧ ((𝑅𝑅) ⊆ 𝑅 ∧ ( 𝑅 × 𝑅) ⊆ (𝑅𝑅)))))
87ibi 269 . . . . 5 (𝑅 ∈ DirRel → ((Rel 𝑅 ∧ ( I ↾ 𝑅) ⊆ 𝑅) ∧ ((𝑅𝑅) ⊆ 𝑅 ∧ ( 𝑅 × 𝑅) ⊆ (𝑅𝑅))))
98simplrd 768 . . . 4 (𝑅 ∈ DirRel → ( I ↾ 𝑅) ⊆ 𝑅)
10 dmss 5765 . . . 4 (( I ↾ 𝑅) ⊆ 𝑅 → dom ( I ↾ 𝑅) ⊆ dom 𝑅)
119, 10syl 17 . . 3 (𝑅 ∈ DirRel → dom ( I ↾ 𝑅) ⊆ dom 𝑅)
125, 11eqsstrrid 4015 . 2 (𝑅 ∈ DirRel → 𝑅 ⊆ dom 𝑅)
134, 12eqssd 3983 1 (𝑅 ∈ DirRel → dom 𝑅 = 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  cun 3933  wss 3935   cuni 4831   I cid 5453   × cxp 5547  ccnv 5548  dom cdm 5549  ran crn 5550  cres 5551  ccom 5553  Rel wrel 5554  DirRelcdir 17832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pr 5321
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-br 5059  df-opab 5121  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-dir 17834
This theorem is referenced by:  dirref  17839  dirge  17841  tailfval  33715  tailf  33718  filnetlem4  33724
  Copyright terms: Public domain W3C validator