Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dirkercncflem3 Structured version   Visualization version   GIF version

Theorem dirkercncflem3 42397
Description: The Dirichlet Kernel is continuous at 𝑌 points that are multiples of (2 · π). (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
dirkercncflem3.d 𝐷 = (𝑛 ∈ ℕ ↦ (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))))
dirkercncflem3.a 𝐴 = (𝑌 − π)
dirkercncflem3.b 𝐵 = (𝑌 + π)
dirkercncflem3.f 𝐹 = (𝑦 ∈ (𝐴(,)𝐵) ↦ ((sin‘((𝑛 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))
dirkercncflem3.g 𝐺 = (𝑦 ∈ (𝐴(,)𝐵) ↦ ((2 · π) · (sin‘(𝑦 / 2))))
dirkercncflem3.n (𝜑𝑁 ∈ ℕ)
dirkercncflem3.yr (𝜑𝑌 ∈ ℝ)
dirkercncflem3.yod (𝜑 → (𝑌 mod (2 · π)) = 0)
Assertion
Ref Expression
dirkercncflem3 (𝜑 → ((𝐷𝑁)‘𝑌) ∈ ((𝐷𝑁) lim 𝑌))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵   𝑦,𝐷   𝑦,𝑁   𝑦,𝑌   𝑦,𝑛   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑛)   𝐴(𝑛)   𝐵(𝑛)   𝐷(𝑛)   𝐹(𝑦,𝑛)   𝐺(𝑦,𝑛)   𝑁(𝑛)   𝑌(𝑛)

Proof of Theorem dirkercncflem3
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dirkercncflem3.d . . 3 𝐷 = (𝑛 ∈ ℕ ↦ (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))))
2 oveq2 7166 . . . . 5 (𝑤 = 𝑦 → ((𝑁 + (1 / 2)) · 𝑤) = ((𝑁 + (1 / 2)) · 𝑦))
32fveq2d 6676 . . . 4 (𝑤 = 𝑦 → (sin‘((𝑁 + (1 / 2)) · 𝑤)) = (sin‘((𝑁 + (1 / 2)) · 𝑦)))
43cbvmptv 5171 . . 3 (𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑤))) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))
5 fvoveq1 7181 . . . . 5 (𝑤 = 𝑦 → (sin‘(𝑤 / 2)) = (sin‘(𝑦 / 2)))
65oveq2d 7174 . . . 4 (𝑤 = 𝑦 → ((2 · π) · (sin‘(𝑤 / 2))) = ((2 · π) · (sin‘(𝑦 / 2))))
76cbvmptv 5171 . . 3 (𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((2 · π) · (sin‘(𝑤 / 2)))) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((2 · π) · (sin‘(𝑦 / 2))))
8 dirkercncflem3.a . . . . . . . 8 𝐴 = (𝑌 − π)
9 dirkercncflem3.b . . . . . . . 8 𝐵 = (𝑌 + π)
10 dirkercncflem3.yr . . . . . . . 8 (𝜑𝑌 ∈ ℝ)
11 dirkercncflem3.yod . . . . . . . 8 (𝜑 → (𝑌 mod (2 · π)) = 0)
128, 9, 10, 11dirkercncflem1 42395 . . . . . . 7 (𝜑 → (𝑌 ∈ (𝐴(,)𝐵) ∧ ∀𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})((sin‘(𝑦 / 2)) ≠ 0 ∧ (cos‘(𝑦 / 2)) ≠ 0)))
1312simprd 498 . . . . . 6 (𝜑 → ∀𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})((sin‘(𝑦 / 2)) ≠ 0 ∧ (cos‘(𝑦 / 2)) ≠ 0))
14 r19.26 3172 . . . . . 6 (∀𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})((sin‘(𝑦 / 2)) ≠ 0 ∧ (cos‘(𝑦 / 2)) ≠ 0) ↔ (∀𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})(sin‘(𝑦 / 2)) ≠ 0 ∧ ∀𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})(cos‘(𝑦 / 2)) ≠ 0))
1513, 14sylib 220 . . . . 5 (𝜑 → (∀𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})(sin‘(𝑦 / 2)) ≠ 0 ∧ ∀𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})(cos‘(𝑦 / 2)) ≠ 0))
1615simpld 497 . . . 4 (𝜑 → ∀𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})(sin‘(𝑦 / 2)) ≠ 0)
1716r19.21bi 3210 . . 3 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (sin‘(𝑦 / 2)) ≠ 0)
182fveq2d 6676 . . . . 5 (𝑤 = 𝑦 → (cos‘((𝑁 + (1 / 2)) · 𝑤)) = (cos‘((𝑁 + (1 / 2)) · 𝑦)))
1918oveq2d 7174 . . . 4 (𝑤 = 𝑦 → ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤))) = ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦))))
2019cbvmptv 5171 . . 3 (𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤)))) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦))))
21 fvoveq1 7181 . . . . 5 (𝑤 = 𝑦 → (cos‘(𝑤 / 2)) = (cos‘(𝑦 / 2)))
2221oveq2d 7174 . . . 4 (𝑤 = 𝑦 → (π · (cos‘(𝑤 / 2))) = (π · (cos‘(𝑦 / 2))))
2322cbvmptv 5171 . . 3 (𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (π · (cos‘(𝑤 / 2)))) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (π · (cos‘(𝑦 / 2))))
24 eqid 2823 . . 3 (𝑧 ∈ (𝐴(,)𝐵) ↦ (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑧))) / (π · (cos‘(𝑧 / 2))))) = (𝑧 ∈ (𝐴(,)𝐵) ↦ (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑧))) / (π · (cos‘(𝑧 / 2)))))
25 dirkercncflem3.n . . 3 (𝜑𝑁 ∈ ℕ)
2612simpld 497 . . 3 (𝜑𝑌 ∈ (𝐴(,)𝐵))
2715simprd 498 . . . 4 (𝜑 → ∀𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})(cos‘(𝑦 / 2)) ≠ 0)
2827r19.21bi 3210 . . 3 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (cos‘(𝑦 / 2)) ≠ 0)
291, 4, 7, 17, 20, 23, 24, 25, 26, 11, 28dirkercncflem2 42396 . 2 (𝜑 → ((𝐷𝑁)‘𝑌) ∈ (((𝐷𝑁) ↾ ((𝐴(,)𝐵) ∖ {𝑌})) lim 𝑌))
301dirkerf 42389 . . . . 5 (𝑁 ∈ ℕ → (𝐷𝑁):ℝ⟶ℝ)
3125, 30syl 17 . . . 4 (𝜑 → (𝐷𝑁):ℝ⟶ℝ)
32 ax-resscn 10596 . . . . 5 ℝ ⊆ ℂ
3332a1i 11 . . . 4 (𝜑 → ℝ ⊆ ℂ)
3431, 33fssd 6530 . . 3 (𝜑 → (𝐷𝑁):ℝ⟶ℂ)
35 ioossre 12801 . . . . 5 (𝐴(,)𝐵) ⊆ ℝ
3635a1i 11 . . . 4 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ)
3736ssdifssd 4121 . . 3 (𝜑 → ((𝐴(,)𝐵) ∖ {𝑌}) ⊆ ℝ)
38 eqid 2823 . . 3 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
39 eqid 2823 . . 3 ((TopOpen‘ℂfld) ↾t (ℝ ∪ {𝑌})) = ((TopOpen‘ℂfld) ↾t (ℝ ∪ {𝑌}))
40 iooretop 23376 . . . . . . 7 (𝐴(,)𝐵) ∈ (topGen‘ran (,))
41 retop 23372 . . . . . . . 8 (topGen‘ran (,)) ∈ Top
42 uniretop 23373 . . . . . . . . 9 ℝ = (topGen‘ran (,))
4342isopn3 21676 . . . . . . . 8 (((topGen‘ran (,)) ∈ Top ∧ (𝐴(,)𝐵) ⊆ ℝ) → ((𝐴(,)𝐵) ∈ (topGen‘ran (,)) ↔ ((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵)) = (𝐴(,)𝐵)))
4441, 36, 43sylancr 589 . . . . . . 7 (𝜑 → ((𝐴(,)𝐵) ∈ (topGen‘ran (,)) ↔ ((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵)) = (𝐴(,)𝐵)))
4540, 44mpbii 235 . . . . . 6 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵)) = (𝐴(,)𝐵))
4626, 45eleqtrrd 2918 . . . . 5 (𝜑𝑌 ∈ ((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵)))
4738tgioo2 23413 . . . . . . . 8 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
4847a1i 11 . . . . . . 7 (𝜑 → (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ))
4948fveq2d 6676 . . . . . 6 (𝜑 → (int‘(topGen‘ran (,))) = (int‘((TopOpen‘ℂfld) ↾t ℝ)))
5049fveq1d 6674 . . . . 5 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵)) = ((int‘((TopOpen‘ℂfld) ↾t ℝ))‘(𝐴(,)𝐵)))
5146, 50eleqtrd 2917 . . . 4 (𝜑𝑌 ∈ ((int‘((TopOpen‘ℂfld) ↾t ℝ))‘(𝐴(,)𝐵)))
5210snssd 4744 . . . . . . . 8 (𝜑 → {𝑌} ⊆ ℝ)
53 ssequn2 4161 . . . . . . . 8 ({𝑌} ⊆ ℝ ↔ (ℝ ∪ {𝑌}) = ℝ)
5452, 53sylib 220 . . . . . . 7 (𝜑 → (ℝ ∪ {𝑌}) = ℝ)
5554oveq2d 7174 . . . . . 6 (𝜑 → ((TopOpen‘ℂfld) ↾t (ℝ ∪ {𝑌})) = ((TopOpen‘ℂfld) ↾t ℝ))
5655fveq2d 6676 . . . . 5 (𝜑 → (int‘((TopOpen‘ℂfld) ↾t (ℝ ∪ {𝑌}))) = (int‘((TopOpen‘ℂfld) ↾t ℝ)))
57 uncom 4131 . . . . . 6 (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}) = ({𝑌} ∪ ((𝐴(,)𝐵) ∖ {𝑌}))
5826snssd 4744 . . . . . . 7 (𝜑 → {𝑌} ⊆ (𝐴(,)𝐵))
59 undif 4432 . . . . . . 7 ({𝑌} ⊆ (𝐴(,)𝐵) ↔ ({𝑌} ∪ ((𝐴(,)𝐵) ∖ {𝑌})) = (𝐴(,)𝐵))
6058, 59sylib 220 . . . . . 6 (𝜑 → ({𝑌} ∪ ((𝐴(,)𝐵) ∖ {𝑌})) = (𝐴(,)𝐵))
6157, 60syl5eq 2870 . . . . 5 (𝜑 → (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}) = (𝐴(,)𝐵))
6256, 61fveq12d 6679 . . . 4 (𝜑 → ((int‘((TopOpen‘ℂfld) ↾t (ℝ ∪ {𝑌})))‘(((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌})) = ((int‘((TopOpen‘ℂfld) ↾t ℝ))‘(𝐴(,)𝐵)))
6351, 62eleqtrrd 2918 . . 3 (𝜑𝑌 ∈ ((int‘((TopOpen‘ℂfld) ↾t (ℝ ∪ {𝑌})))‘(((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌})))
6434, 37, 33, 38, 39, 63limcres 24486 . 2 (𝜑 → (((𝐷𝑁) ↾ ((𝐴(,)𝐵) ∖ {𝑌})) lim 𝑌) = ((𝐷𝑁) lim 𝑌))
6529, 64eleqtrd 2917 1 (𝜑 → ((𝐷𝑁)‘𝑌) ∈ ((𝐷𝑁) lim 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3018  wral 3140  cdif 3935  cun 3936  wss 3938  ifcif 4469  {csn 4569  cmpt 5148  ran crn 5558  cres 5559  wf 6353  cfv 6357  (class class class)co 7158  cc 10537  cr 10538  0cc0 10539  1c1 10540   + caddc 10542   · cmul 10544  cmin 10872   / cdiv 11299  cn 11640  2c2 11695  (,)cioo 12741   mod cmo 13240  sincsin 15419  cosccos 15420  πcpi 15422  t crest 16696  TopOpenctopn 16697  topGenctg 16713  fldccnfld 20547  Topctop 21503  intcnt 21627   lim climc 24462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617  ax-addf 10618  ax-mulf 10619
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-map 8410  df-pm 8411  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-fi 8877  df-sup 8908  df-inf 8909  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ioo 12745  df-ioc 12746  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-fl 13165  df-mod 13241  df-seq 13373  df-exp 13433  df-fac 13637  df-bc 13666  df-hash 13694  df-shft 14428  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-limsup 14830  df-clim 14847  df-rlim 14848  df-sum 15045  df-ef 15423  df-sin 15425  df-cos 15426  df-pi 15428  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-starv 16582  df-sca 16583  df-vsca 16584  df-ip 16585  df-tset 16586  df-ple 16587  df-ds 16589  df-unif 16590  df-hom 16591  df-cco 16592  df-rest 16698  df-topn 16699  df-0g 16717  df-gsum 16718  df-topgen 16719  df-pt 16720  df-prds 16723  df-xrs 16777  df-qtop 16782  df-imas 16783  df-xps 16785  df-mre 16859  df-mrc 16860  df-acs 16862  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-submnd 17959  df-mulg 18227  df-cntz 18449  df-cmn 18910  df-psmet 20539  df-xmet 20540  df-met 20541  df-bl 20542  df-mopn 20543  df-fbas 20544  df-fg 20545  df-cnfld 20548  df-top 21504  df-topon 21521  df-topsp 21543  df-bases 21556  df-cld 21629  df-ntr 21630  df-cls 21631  df-nei 21708  df-lp 21746  df-perf 21747  df-cn 21837  df-cnp 21838  df-t1 21924  df-haus 21925  df-cmp 21997  df-tx 22172  df-hmeo 22365  df-fil 22456  df-fm 22548  df-flim 22549  df-flf 22550  df-xms 22932  df-ms 22933  df-tms 22934  df-cncf 23488  df-limc 24466  df-dv 24467
This theorem is referenced by:  dirkercncf  42399
  Copyright terms: Public domain W3C validator