Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dirkerval2 Structured version   Visualization version   GIF version

Theorem dirkerval2 39644
Description: The Nth Dirichlet Kernel evaluated at a specific point 𝑆. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypothesis
Ref Expression
dirkerval2.1 𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
Assertion
Ref Expression
dirkerval2 ((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) → ((𝐷𝑁)‘𝑆) = if((𝑆 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑆)) / ((2 · π) · (sin‘(𝑆 / 2))))))
Distinct variable groups:   𝑁,𝑠   𝑛,𝑠
Allowed substitution hints:   𝐷(𝑛,𝑠)   𝑆(𝑛,𝑠)   𝑁(𝑛)

Proof of Theorem dirkerval2
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 dirkerval2.1 . . . . 5 𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
21dirkerval 39641 . . . 4 (𝑁 ∈ ℕ → (𝐷𝑁) = (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
3 oveq1 6617 . . . . . . 7 (𝑠 = 𝑡 → (𝑠 mod (2 · π)) = (𝑡 mod (2 · π)))
43eqeq1d 2623 . . . . . 6 (𝑠 = 𝑡 → ((𝑠 mod (2 · π)) = 0 ↔ (𝑡 mod (2 · π)) = 0))
5 oveq2 6618 . . . . . . . 8 (𝑠 = 𝑡 → ((𝑁 + (1 / 2)) · 𝑠) = ((𝑁 + (1 / 2)) · 𝑡))
65fveq2d 6157 . . . . . . 7 (𝑠 = 𝑡 → (sin‘((𝑁 + (1 / 2)) · 𝑠)) = (sin‘((𝑁 + (1 / 2)) · 𝑡)))
7 oveq1 6617 . . . . . . . . 9 (𝑠 = 𝑡 → (𝑠 / 2) = (𝑡 / 2))
87fveq2d 6157 . . . . . . . 8 (𝑠 = 𝑡 → (sin‘(𝑠 / 2)) = (sin‘(𝑡 / 2)))
98oveq2d 6626 . . . . . . 7 (𝑠 = 𝑡 → ((2 · π) · (sin‘(𝑠 / 2))) = ((2 · π) · (sin‘(𝑡 / 2))))
106, 9oveq12d 6628 . . . . . 6 (𝑠 = 𝑡 → ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))) = ((sin‘((𝑁 + (1 / 2)) · 𝑡)) / ((2 · π) · (sin‘(𝑡 / 2)))))
114, 10ifbieq2d 4088 . . . . 5 (𝑠 = 𝑡 → if((𝑠 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))) = if((𝑡 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑡)) / ((2 · π) · (sin‘(𝑡 / 2))))))
1211cbvmptv 4715 . . . 4 (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))) = (𝑡 ∈ ℝ ↦ if((𝑡 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑡)) / ((2 · π) · (sin‘(𝑡 / 2))))))
132, 12syl6eq 2671 . . 3 (𝑁 ∈ ℕ → (𝐷𝑁) = (𝑡 ∈ ℝ ↦ if((𝑡 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑡)) / ((2 · π) · (sin‘(𝑡 / 2)))))))
1413adantr 481 . 2 ((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) → (𝐷𝑁) = (𝑡 ∈ ℝ ↦ if((𝑡 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑡)) / ((2 · π) · (sin‘(𝑡 / 2)))))))
15 simpr 477 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) ∧ 𝑡 = 𝑆) → 𝑡 = 𝑆)
1615oveq1d 6625 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) ∧ 𝑡 = 𝑆) → (𝑡 mod (2 · π)) = (𝑆 mod (2 · π)))
1716eqeq1d 2623 . . 3 (((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) ∧ 𝑡 = 𝑆) → ((𝑡 mod (2 · π)) = 0 ↔ (𝑆 mod (2 · π)) = 0))
1815oveq2d 6626 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) ∧ 𝑡 = 𝑆) → ((𝑁 + (1 / 2)) · 𝑡) = ((𝑁 + (1 / 2)) · 𝑆))
1918fveq2d 6157 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) ∧ 𝑡 = 𝑆) → (sin‘((𝑁 + (1 / 2)) · 𝑡)) = (sin‘((𝑁 + (1 / 2)) · 𝑆)))
2015oveq1d 6625 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) ∧ 𝑡 = 𝑆) → (𝑡 / 2) = (𝑆 / 2))
2120fveq2d 6157 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) ∧ 𝑡 = 𝑆) → (sin‘(𝑡 / 2)) = (sin‘(𝑆 / 2)))
2221oveq2d 6626 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) ∧ 𝑡 = 𝑆) → ((2 · π) · (sin‘(𝑡 / 2))) = ((2 · π) · (sin‘(𝑆 / 2))))
2319, 22oveq12d 6628 . . 3 (((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) ∧ 𝑡 = 𝑆) → ((sin‘((𝑁 + (1 / 2)) · 𝑡)) / ((2 · π) · (sin‘(𝑡 / 2)))) = ((sin‘((𝑁 + (1 / 2)) · 𝑆)) / ((2 · π) · (sin‘(𝑆 / 2)))))
2417, 23ifbieq2d 4088 . 2 (((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) ∧ 𝑡 = 𝑆) → if((𝑡 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑡)) / ((2 · π) · (sin‘(𝑡 / 2))))) = if((𝑆 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑆)) / ((2 · π) · (sin‘(𝑆 / 2))))))
25 simpr 477 . 2 ((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) → 𝑆 ∈ ℝ)
26 2re 11042 . . . . . . . 8 2 ∈ ℝ
2726a1i 11 . . . . . . 7 (𝑁 ∈ ℕ → 2 ∈ ℝ)
28 nnre 10979 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
2927, 28remulcld 10022 . . . . . 6 (𝑁 ∈ ℕ → (2 · 𝑁) ∈ ℝ)
30 1red 10007 . . . . . 6 (𝑁 ∈ ℕ → 1 ∈ ℝ)
3129, 30readdcld 10021 . . . . 5 (𝑁 ∈ ℕ → ((2 · 𝑁) + 1) ∈ ℝ)
32 pire 24131 . . . . . . 7 π ∈ ℝ
3332a1i 11 . . . . . 6 (𝑁 ∈ ℕ → π ∈ ℝ)
3427, 33remulcld 10022 . . . . 5 (𝑁 ∈ ℕ → (2 · π) ∈ ℝ)
35 2cnd 11045 . . . . . 6 (𝑁 ∈ ℕ → 2 ∈ ℂ)
3633recnd 10020 . . . . . 6 (𝑁 ∈ ℕ → π ∈ ℂ)
37 2pos 11064 . . . . . . . 8 0 < 2
3837a1i 11 . . . . . . 7 (𝑁 ∈ ℕ → 0 < 2)
3938gt0ne0d 10544 . . . . . 6 (𝑁 ∈ ℕ → 2 ≠ 0)
40 pipos 24133 . . . . . . . 8 0 < π
4140a1i 11 . . . . . . 7 (𝑁 ∈ ℕ → 0 < π)
4241gt0ne0d 10544 . . . . . 6 (𝑁 ∈ ℕ → π ≠ 0)
4335, 36, 39, 42mulne0d 10631 . . . . 5 (𝑁 ∈ ℕ → (2 · π) ≠ 0)
4431, 34, 43redivcld 10805 . . . 4 (𝑁 ∈ ℕ → (((2 · 𝑁) + 1) / (2 · π)) ∈ ℝ)
4544ad2antrr 761 . . 3 (((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) ∧ (𝑆 mod (2 · π)) = 0) → (((2 · 𝑁) + 1) / (2 · π)) ∈ ℝ)
46 dirker2re 39642 . . 3 (((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) ∧ ¬ (𝑆 mod (2 · π)) = 0) → ((sin‘((𝑁 + (1 / 2)) · 𝑆)) / ((2 · π) · (sin‘(𝑆 / 2)))) ∈ ℝ)
4745, 46ifclda 4097 . 2 ((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) → if((𝑆 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑆)) / ((2 · π) · (sin‘(𝑆 / 2))))) ∈ ℝ)
4814, 24, 25, 47fvmptd 6250 1 ((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) → ((𝐷𝑁)‘𝑆) = if((𝑆 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑆)) / ((2 · π) · (sin‘(𝑆 / 2))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  ifcif 4063   class class class wbr 4618  cmpt 4678  cfv 5852  (class class class)co 6610  cr 9887  0cc0 9888  1c1 9889   + caddc 9891   · cmul 9893   < clt 10026   / cdiv 10636  cn 10972  2c2 11022   mod cmo 12616  sincsin 14730  πcpi 14733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-inf2 8490  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965  ax-pre-sup 9966  ax-addf 9967  ax-mulf 9968
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-iin 4493  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-isom 5861  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-of 6857  df-om 7020  df-1st 7120  df-2nd 7121  df-supp 7248  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-2o 7513  df-oadd 7516  df-er 7694  df-map 7811  df-pm 7812  df-ixp 7861  df-en 7908  df-dom 7909  df-sdom 7910  df-fin 7911  df-fsupp 8228  df-fi 8269  df-sup 8300  df-inf 8301  df-oi 8367  df-card 8717  df-cda 8942  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-div 10637  df-nn 10973  df-2 11031  df-3 11032  df-4 11033  df-5 11034  df-6 11035  df-7 11036  df-8 11037  df-9 11038  df-n0 11245  df-z 11330  df-dec 11446  df-uz 11640  df-q 11741  df-rp 11785  df-xneg 11898  df-xadd 11899  df-xmul 11900  df-ioo 12129  df-ioc 12130  df-ico 12131  df-icc 12132  df-fz 12277  df-fzo 12415  df-fl 12541  df-mod 12617  df-seq 12750  df-exp 12809  df-fac 13009  df-bc 13038  df-hash 13066  df-shft 13749  df-cj 13781  df-re 13782  df-im 13783  df-sqrt 13917  df-abs 13918  df-limsup 14144  df-clim 14161  df-rlim 14162  df-sum 14359  df-ef 14734  df-sin 14736  df-cos 14737  df-pi 14739  df-struct 15794  df-ndx 15795  df-slot 15796  df-base 15797  df-sets 15798  df-ress 15799  df-plusg 15886  df-mulr 15887  df-starv 15888  df-sca 15889  df-vsca 15890  df-ip 15891  df-tset 15892  df-ple 15893  df-ds 15896  df-unif 15897  df-hom 15898  df-cco 15899  df-rest 16015  df-topn 16016  df-0g 16034  df-gsum 16035  df-topgen 16036  df-pt 16037  df-prds 16040  df-xrs 16094  df-qtop 16099  df-imas 16100  df-xps 16102  df-mre 16178  df-mrc 16179  df-acs 16181  df-mgm 17174  df-sgrp 17216  df-mnd 17227  df-submnd 17268  df-mulg 17473  df-cntz 17682  df-cmn 18127  df-psmet 19670  df-xmet 19671  df-met 19672  df-bl 19673  df-mopn 19674  df-fbas 19675  df-fg 19676  df-cnfld 19679  df-top 20631  df-topon 20648  df-topsp 20661  df-bases 20674  df-cld 20746  df-ntr 20747  df-cls 20748  df-nei 20825  df-lp 20863  df-perf 20864  df-cn 20954  df-cnp 20955  df-haus 21042  df-tx 21288  df-hmeo 21481  df-fil 21573  df-fm 21665  df-flim 21666  df-flf 21667  df-xms 22048  df-ms 22049  df-tms 22050  df-cncf 22604  df-limc 23553  df-dv 23554
This theorem is referenced by:  dirkerre  39645  dirkerper  39646  dirkerf  39647  dirkercncflem2  39654  fourierdlem66  39722
  Copyright terms: Public domain W3C validator