MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dis1stc Structured version   Visualization version   GIF version

Theorem dis1stc 21212
Description: A discrete space is first-countable. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
dis1stc (𝑋𝑉 → 𝒫 𝑋 ∈ 1st𝜔)

Proof of Theorem dis1stc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 snex 4869 . . . . . . . 8 {𝑥} ∈ V
2 distop 20710 . . . . . . . 8 ({𝑥} ∈ V → 𝒫 {𝑥} ∈ Top)
31, 2ax-mp 5 . . . . . . 7 𝒫 {𝑥} ∈ Top
4 tgtop 20688 . . . . . . 7 (𝒫 {𝑥} ∈ Top → (topGen‘𝒫 {𝑥}) = 𝒫 {𝑥})
53, 4ax-mp 5 . . . . . 6 (topGen‘𝒫 {𝑥}) = 𝒫 {𝑥}
6 topbas 20687 . . . . . . . 8 (𝒫 {𝑥} ∈ Top → 𝒫 {𝑥} ∈ TopBases)
73, 6ax-mp 5 . . . . . . 7 𝒫 {𝑥} ∈ TopBases
8 snfi 7982 . . . . . . . . . 10 {𝑥} ∈ Fin
9 pwfi 8205 . . . . . . . . . 10 ({𝑥} ∈ Fin ↔ 𝒫 {𝑥} ∈ Fin)
108, 9mpbi 220 . . . . . . . . 9 𝒫 {𝑥} ∈ Fin
11 isfinite 8493 . . . . . . . . 9 (𝒫 {𝑥} ∈ Fin ↔ 𝒫 {𝑥} ≺ ω)
1210, 11mpbi 220 . . . . . . . 8 𝒫 {𝑥} ≺ ω
13 sdomdom 7927 . . . . . . . 8 (𝒫 {𝑥} ≺ ω → 𝒫 {𝑥} ≼ ω)
1412, 13ax-mp 5 . . . . . . 7 𝒫 {𝑥} ≼ ω
15 2ndci 21161 . . . . . . 7 ((𝒫 {𝑥} ∈ TopBases ∧ 𝒫 {𝑥} ≼ ω) → (topGen‘𝒫 {𝑥}) ∈ 2nd𝜔)
167, 14, 15mp2an 707 . . . . . 6 (topGen‘𝒫 {𝑥}) ∈ 2nd𝜔
175, 16eqeltrri 2695 . . . . 5 𝒫 {𝑥} ∈ 2nd𝜔
18 2ndc1stc 21164 . . . . 5 (𝒫 {𝑥} ∈ 2nd𝜔 → 𝒫 {𝑥} ∈ 1st𝜔)
1917, 18ax-mp 5 . . . 4 𝒫 {𝑥} ∈ 1st𝜔
2019rgenw 2919 . . 3 𝑥𝑋 𝒫 {𝑥} ∈ 1st𝜔
21 dislly 21210 . . 3 (𝑋𝑉 → (𝒫 𝑋 ∈ Locally 1st𝜔 ↔ ∀𝑥𝑋 𝒫 {𝑥} ∈ 1st𝜔))
2220, 21mpbiri 248 . 2 (𝑋𝑉 → 𝒫 𝑋 ∈ Locally 1st𝜔)
23 lly1stc 21209 . 2 Locally 1st𝜔 = 1st𝜔
2422, 23syl6eleq 2708 1 (𝑋𝑉 → 𝒫 𝑋 ∈ 1st𝜔)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1480  wcel 1987  wral 2907  Vcvv 3186  𝒫 cpw 4130  {csn 4148   class class class wbr 4613  cfv 5847  ωcom 7012  cdom 7897  csdm 7898  Fincfn 7899  topGenctg 16019  Topctop 20617  TopBasesctb 20620  1st𝜔c1stc 21150  2nd𝜔c2ndc 21151  Locally clly 21177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-2o 7506  df-oadd 7509  df-er 7687  df-map 7804  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-fi 8261  df-card 8709  df-acn 8712  df-rest 16004  df-topgen 16025  df-top 20621  df-bases 20622  df-topon 20623  df-1stc 21152  df-2ndc 21153  df-lly 21179
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator