MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  discld Structured version   Visualization version   GIF version

Theorem discld 21691
Description: The open sets of a discrete topology are closed and its closed sets are open. (Contributed by FL, 7-Jun-2007.) (Revised by Mario Carneiro, 7-Apr-2015.)
Assertion
Ref Expression
discld (𝐴𝑉 → (Clsd‘𝒫 𝐴) = 𝒫 𝐴)

Proof of Theorem discld
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 difss 4108 . . . . 5 (𝐴𝑥) ⊆ 𝐴
2 elpw2g 5240 . . . . 5 (𝐴𝑉 → ((𝐴𝑥) ∈ 𝒫 𝐴 ↔ (𝐴𝑥) ⊆ 𝐴))
31, 2mpbiri 260 . . . 4 (𝐴𝑉 → (𝐴𝑥) ∈ 𝒫 𝐴)
4 distop 21597 . . . . 5 (𝐴𝑉 → 𝒫 𝐴 ∈ Top)
5 unipw 5335 . . . . . . 7 𝒫 𝐴 = 𝐴
65eqcomi 2830 . . . . . 6 𝐴 = 𝒫 𝐴
76iscld 21629 . . . . 5 (𝒫 𝐴 ∈ Top → (𝑥 ∈ (Clsd‘𝒫 𝐴) ↔ (𝑥𝐴 ∧ (𝐴𝑥) ∈ 𝒫 𝐴)))
84, 7syl 17 . . . 4 (𝐴𝑉 → (𝑥 ∈ (Clsd‘𝒫 𝐴) ↔ (𝑥𝐴 ∧ (𝐴𝑥) ∈ 𝒫 𝐴)))
93, 8mpbiran2d 706 . . 3 (𝐴𝑉 → (𝑥 ∈ (Clsd‘𝒫 𝐴) ↔ 𝑥𝐴))
10 velpw 4547 . . 3 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
119, 10syl6bbr 291 . 2 (𝐴𝑉 → (𝑥 ∈ (Clsd‘𝒫 𝐴) ↔ 𝑥 ∈ 𝒫 𝐴))
1211eqrdv 2819 1 (𝐴𝑉 → (Clsd‘𝒫 𝐴) = 𝒫 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  cdif 3933  wss 3936  𝒫 cpw 4539   cuni 4832  cfv 6350  Topctop 21495  Clsdccld 21618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3497  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4833  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5455  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-iota 6309  df-fun 6352  df-fv 6358  df-top 21496  df-cld 21621
This theorem is referenced by:  sn0cld  21692
  Copyright terms: Public domain W3C validator