MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  discmp Structured version   Visualization version   GIF version

Theorem discmp 21106
Description: A discrete topology is compact iff the base set is finite. (Contributed by Mario Carneiro, 19-Mar-2015.)
Assertion
Ref Expression
discmp (𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Comp)

Proof of Theorem discmp
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 distop 20705 . . . 4 (𝐴 ∈ Fin → 𝒫 𝐴 ∈ Top)
2 pwfi 8206 . . . . 5 (𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin)
32biimpi 206 . . . 4 (𝐴 ∈ Fin → 𝒫 𝐴 ∈ Fin)
41, 3elind 3781 . . 3 (𝐴 ∈ Fin → 𝒫 𝐴 ∈ (Top ∩ Fin))
5 fincmp 21101 . . 3 (𝒫 𝐴 ∈ (Top ∩ Fin) → 𝒫 𝐴 ∈ Comp)
64, 5syl 17 . 2 (𝐴 ∈ Fin → 𝒫 𝐴 ∈ Comp)
7 simpr 477 . . . . . . . 8 ((𝒫 𝐴 ∈ Comp ∧ 𝑥𝐴) → 𝑥𝐴)
87snssd 4314 . . . . . . 7 ((𝒫 𝐴 ∈ Comp ∧ 𝑥𝐴) → {𝑥} ⊆ 𝐴)
9 snex 4874 . . . . . . . 8 {𝑥} ∈ V
109elpw 4141 . . . . . . 7 ({𝑥} ∈ 𝒫 𝐴 ↔ {𝑥} ⊆ 𝐴)
118, 10sylibr 224 . . . . . 6 ((𝒫 𝐴 ∈ Comp ∧ 𝑥𝐴) → {𝑥} ∈ 𝒫 𝐴)
12 eqid 2626 . . . . . 6 (𝑥𝐴 ↦ {𝑥}) = (𝑥𝐴 ↦ {𝑥})
1311, 12fmptd 6341 . . . . 5 (𝒫 𝐴 ∈ Comp → (𝑥𝐴 ↦ {𝑥}):𝐴⟶𝒫 𝐴)
14 frn 6012 . . . . 5 ((𝑥𝐴 ↦ {𝑥}):𝐴⟶𝒫 𝐴 → ran (𝑥𝐴 ↦ {𝑥}) ⊆ 𝒫 𝐴)
1513, 14syl 17 . . . 4 (𝒫 𝐴 ∈ Comp → ran (𝑥𝐴 ↦ {𝑥}) ⊆ 𝒫 𝐴)
1612rnmpt 5335 . . . . . . 7 ran (𝑥𝐴 ↦ {𝑥}) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}}
1716unieqi 4416 . . . . . 6 ran (𝑥𝐴 ↦ {𝑥}) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}}
189dfiun2 4525 . . . . . 6 𝑥𝐴 {𝑥} = {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}}
19 iunid 4546 . . . . . 6 𝑥𝐴 {𝑥} = 𝐴
2017, 18, 193eqtr2ri 2655 . . . . 5 𝐴 = ran (𝑥𝐴 ↦ {𝑥})
2120a1i 11 . . . 4 (𝒫 𝐴 ∈ Comp → 𝐴 = ran (𝑥𝐴 ↦ {𝑥}))
22 unipw 4884 . . . . . 6 𝒫 𝐴 = 𝐴
2322eqcomi 2635 . . . . 5 𝐴 = 𝒫 𝐴
2423cmpcov 21097 . . . 4 ((𝒫 𝐴 ∈ Comp ∧ ran (𝑥𝐴 ↦ {𝑥}) ⊆ 𝒫 𝐴𝐴 = ran (𝑥𝐴 ↦ {𝑥})) → ∃𝑦 ∈ (𝒫 ran (𝑥𝐴 ↦ {𝑥}) ∩ Fin)𝐴 = 𝑦)
2515, 21, 24mpd3an23 1423 . . 3 (𝒫 𝐴 ∈ Comp → ∃𝑦 ∈ (𝒫 ran (𝑥𝐴 ↦ {𝑥}) ∩ Fin)𝐴 = 𝑦)
26 elin 3779 . . . . . . 7 (𝑦 ∈ (𝒫 ran (𝑥𝐴 ↦ {𝑥}) ∩ Fin) ↔ (𝑦 ∈ 𝒫 ran (𝑥𝐴 ↦ {𝑥}) ∧ 𝑦 ∈ Fin))
2726simprbi 480 . . . . . 6 (𝑦 ∈ (𝒫 ran (𝑥𝐴 ↦ {𝑥}) ∩ Fin) → 𝑦 ∈ Fin)
2826simplbi 476 . . . . . . . 8 (𝑦 ∈ (𝒫 ran (𝑥𝐴 ↦ {𝑥}) ∩ Fin) → 𝑦 ∈ 𝒫 ran (𝑥𝐴 ↦ {𝑥}))
2928elpwid 4146 . . . . . . 7 (𝑦 ∈ (𝒫 ran (𝑥𝐴 ↦ {𝑥}) ∩ Fin) → 𝑦 ⊆ ran (𝑥𝐴 ↦ {𝑥}))
30 snfi 7983 . . . . . . . . . 10 {𝑥} ∈ Fin
3130rgenw 2924 . . . . . . . . 9 𝑥𝐴 {𝑥} ∈ Fin
3212fmpt 6338 . . . . . . . . 9 (∀𝑥𝐴 {𝑥} ∈ Fin ↔ (𝑥𝐴 ↦ {𝑥}):𝐴⟶Fin)
3331, 32mpbi 220 . . . . . . . 8 (𝑥𝐴 ↦ {𝑥}):𝐴⟶Fin
34 frn 6012 . . . . . . . 8 ((𝑥𝐴 ↦ {𝑥}):𝐴⟶Fin → ran (𝑥𝐴 ↦ {𝑥}) ⊆ Fin)
3533, 34mp1i 13 . . . . . . 7 (𝑦 ∈ (𝒫 ran (𝑥𝐴 ↦ {𝑥}) ∩ Fin) → ran (𝑥𝐴 ↦ {𝑥}) ⊆ Fin)
3629, 35sstrd 3598 . . . . . 6 (𝑦 ∈ (𝒫 ran (𝑥𝐴 ↦ {𝑥}) ∩ Fin) → 𝑦 ⊆ Fin)
37 unifi 8200 . . . . . 6 ((𝑦 ∈ Fin ∧ 𝑦 ⊆ Fin) → 𝑦 ∈ Fin)
3827, 36, 37syl2anc 692 . . . . 5 (𝑦 ∈ (𝒫 ran (𝑥𝐴 ↦ {𝑥}) ∩ Fin) → 𝑦 ∈ Fin)
39 eleq1 2692 . . . . 5 (𝐴 = 𝑦 → (𝐴 ∈ Fin ↔ 𝑦 ∈ Fin))
4038, 39syl5ibrcom 237 . . . 4 (𝑦 ∈ (𝒫 ran (𝑥𝐴 ↦ {𝑥}) ∩ Fin) → (𝐴 = 𝑦𝐴 ∈ Fin))
4140rexlimiv 3025 . . 3 (∃𝑦 ∈ (𝒫 ran (𝑥𝐴 ↦ {𝑥}) ∩ Fin)𝐴 = 𝑦𝐴 ∈ Fin)
4225, 41syl 17 . 2 (𝒫 𝐴 ∈ Comp → 𝐴 ∈ Fin)
436, 42impbii 199 1 (𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Comp)
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384   = wceq 1480  wcel 1992  {cab 2612  wral 2912  wrex 2913  cin 3559  wss 3560  𝒫 cpw 4135  {csn 4153   cuni 4407   ciun 4490  cmpt 4678  ran crn 5080  wf 5846  Fincfn 7900  Topctop 20612  Compccmp 21094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-om 7014  df-1st 7116  df-2nd 7117  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-1o 7506  df-2o 7507  df-oadd 7510  df-er 7688  df-map 7805  df-en 7901  df-dom 7902  df-sdom 7903  df-fin 7904  df-top 20616  df-cmp 21095
This theorem is referenced by:  disllycmp  21206  xkohaus  21361  xkoptsub  21362  xkopt  21363
  Copyright terms: Public domain W3C validator