MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dishaus Structured version   Visualization version   GIF version

Theorem dishaus 21989
Description: A discrete topology is Hausdorff. Morris, Topology without tears, p.72, ex. 13. (Contributed by FL, 24-Jun-2007.) (Proof shortened by Mario Carneiro, 8-Apr-2015.)
Assertion
Ref Expression
dishaus (𝐴𝑉 → 𝒫 𝐴 ∈ Haus)

Proof of Theorem dishaus
Dummy variables 𝑣 𝑢 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 distop 21602 . 2 (𝐴𝑉 → 𝒫 𝐴 ∈ Top)
2 simplrl 775 . . . . . . 7 (((𝐴𝑉 ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝑥𝑦) → 𝑥𝐴)
32snssd 4741 . . . . . 6 (((𝐴𝑉 ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝑥𝑦) → {𝑥} ⊆ 𝐴)
4 snex 5331 . . . . . . 7 {𝑥} ∈ V
54elpw 4542 . . . . . 6 ({𝑥} ∈ 𝒫 𝐴 ↔ {𝑥} ⊆ 𝐴)
63, 5sylibr 236 . . . . 5 (((𝐴𝑉 ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝑥𝑦) → {𝑥} ∈ 𝒫 𝐴)
7 simplrr 776 . . . . . . 7 (((𝐴𝑉 ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝑥𝑦) → 𝑦𝐴)
87snssd 4741 . . . . . 6 (((𝐴𝑉 ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝑥𝑦) → {𝑦} ⊆ 𝐴)
9 snex 5331 . . . . . . 7 {𝑦} ∈ V
109elpw 4542 . . . . . 6 ({𝑦} ∈ 𝒫 𝐴 ↔ {𝑦} ⊆ 𝐴)
118, 10sylibr 236 . . . . 5 (((𝐴𝑉 ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝑥𝑦) → {𝑦} ∈ 𝒫 𝐴)
12 vsnid 4601 . . . . . 6 𝑥 ∈ {𝑥}
1312a1i 11 . . . . 5 (((𝐴𝑉 ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝑥𝑦) → 𝑥 ∈ {𝑥})
14 vsnid 4601 . . . . . 6 𝑦 ∈ {𝑦}
1514a1i 11 . . . . 5 (((𝐴𝑉 ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝑥𝑦) → 𝑦 ∈ {𝑦})
16 disjsn2 4647 . . . . . 6 (𝑥𝑦 → ({𝑥} ∩ {𝑦}) = ∅)
1716adantl 484 . . . . 5 (((𝐴𝑉 ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝑥𝑦) → ({𝑥} ∩ {𝑦}) = ∅)
18 eleq2 2901 . . . . . . 7 (𝑢 = {𝑥} → (𝑥𝑢𝑥 ∈ {𝑥}))
19 ineq1 4180 . . . . . . . 8 (𝑢 = {𝑥} → (𝑢𝑣) = ({𝑥} ∩ 𝑣))
2019eqeq1d 2823 . . . . . . 7 (𝑢 = {𝑥} → ((𝑢𝑣) = ∅ ↔ ({𝑥} ∩ 𝑣) = ∅))
2118, 203anbi13d 1434 . . . . . 6 (𝑢 = {𝑥} → ((𝑥𝑢𝑦𝑣 ∧ (𝑢𝑣) = ∅) ↔ (𝑥 ∈ {𝑥} ∧ 𝑦𝑣 ∧ ({𝑥} ∩ 𝑣) = ∅)))
22 eleq2 2901 . . . . . . 7 (𝑣 = {𝑦} → (𝑦𝑣𝑦 ∈ {𝑦}))
23 ineq2 4182 . . . . . . . 8 (𝑣 = {𝑦} → ({𝑥} ∩ 𝑣) = ({𝑥} ∩ {𝑦}))
2423eqeq1d 2823 . . . . . . 7 (𝑣 = {𝑦} → (({𝑥} ∩ 𝑣) = ∅ ↔ ({𝑥} ∩ {𝑦}) = ∅))
2522, 243anbi23d 1435 . . . . . 6 (𝑣 = {𝑦} → ((𝑥 ∈ {𝑥} ∧ 𝑦𝑣 ∧ ({𝑥} ∩ 𝑣) = ∅) ↔ (𝑥 ∈ {𝑥} ∧ 𝑦 ∈ {𝑦} ∧ ({𝑥} ∩ {𝑦}) = ∅)))
2621, 25rspc2ev 3634 . . . . 5 (({𝑥} ∈ 𝒫 𝐴 ∧ {𝑦} ∈ 𝒫 𝐴 ∧ (𝑥 ∈ {𝑥} ∧ 𝑦 ∈ {𝑦} ∧ ({𝑥} ∩ {𝑦}) = ∅)) → ∃𝑢 ∈ 𝒫 𝐴𝑣 ∈ 𝒫 𝐴(𝑥𝑢𝑦𝑣 ∧ (𝑢𝑣) = ∅))
276, 11, 13, 15, 17, 26syl113anc 1378 . . . 4 (((𝐴𝑉 ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝑥𝑦) → ∃𝑢 ∈ 𝒫 𝐴𝑣 ∈ 𝒫 𝐴(𝑥𝑢𝑦𝑣 ∧ (𝑢𝑣) = ∅))
2827ex 415 . . 3 ((𝐴𝑉 ∧ (𝑥𝐴𝑦𝐴)) → (𝑥𝑦 → ∃𝑢 ∈ 𝒫 𝐴𝑣 ∈ 𝒫 𝐴(𝑥𝑢𝑦𝑣 ∧ (𝑢𝑣) = ∅)))
2928ralrimivva 3191 . 2 (𝐴𝑉 → ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → ∃𝑢 ∈ 𝒫 𝐴𝑣 ∈ 𝒫 𝐴(𝑥𝑢𝑦𝑣 ∧ (𝑢𝑣) = ∅)))
30 unipw 5342 . . . 4 𝒫 𝐴 = 𝐴
3130eqcomi 2830 . . 3 𝐴 = 𝒫 𝐴
3231ishaus 21929 . 2 (𝒫 𝐴 ∈ Haus ↔ (𝒫 𝐴 ∈ Top ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → ∃𝑢 ∈ 𝒫 𝐴𝑣 ∈ 𝒫 𝐴(𝑥𝑢𝑦𝑣 ∧ (𝑢𝑣) = ∅))))
331, 29, 32sylanbrc 585 1 (𝐴𝑉 → 𝒫 𝐴 ∈ Haus)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1533  wcel 2110  wne 3016  wral 3138  wrex 3139  cin 3934  wss 3935  c0 4290  𝒫 cpw 4538  {csn 4566   cuni 4837  Topctop 21500  Hauscha 21915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-pw 4540  df-sn 4567  df-pr 4569  df-uni 4838  df-top 21501  df-haus 21922
This theorem is referenced by:  ssoninhaus  33796
  Copyright terms: Public domain W3C validator