Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjabrex Structured version   Visualization version   GIF version

Theorem disjabrex 30334
Description: Rewriting a disjoint collection into a partition of its image set. (Contributed by Thierry Arnoux, 30-Dec-2016.)
Assertion
Ref Expression
disjabrex (Disj 𝑥𝐴 𝐵Disj 𝑦 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}𝑦)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑦,𝐵,𝑧
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem disjabrex
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfdisj1 5047 . . . 4 𝑥Disj 𝑥𝐴 𝐵
2 nfcv 2979 . . . . 5 𝑥𝑦
3 nfv 1915 . . . . . . . . . 10 𝑥 𝑖𝐴
4 nfcsb1v 3909 . . . . . . . . . . 11 𝑥𝑖 / 𝑥𝐵
54nfcri 2973 . . . . . . . . . 10 𝑥 𝑗𝑖 / 𝑥𝐵
63, 5nfan 1900 . . . . . . . . 9 𝑥(𝑖𝐴𝑗𝑖 / 𝑥𝐵)
76nfab 2986 . . . . . . . 8 𝑥{𝑖 ∣ (𝑖𝐴𝑗𝑖 / 𝑥𝐵)}
87nfuni 4847 . . . . . . 7 𝑥 {𝑖 ∣ (𝑖𝐴𝑗𝑖 / 𝑥𝐵)}
98nfcsb1 3908 . . . . . 6 𝑥 {𝑖 ∣ (𝑖𝐴𝑗𝑖 / 𝑥𝐵)} / 𝑥𝐵
109nfeq1 2995 . . . . 5 𝑥 {𝑖 ∣ (𝑖𝐴𝑗𝑖 / 𝑥𝐵)} / 𝑥𝐵 = 𝑦
112, 10nfralw 3227 . . . 4 𝑥𝑗𝑦 {𝑖 ∣ (𝑖𝐴𝑗𝑖 / 𝑥𝐵)} / 𝑥𝐵 = 𝑦
12 eqeq2 2835 . . . . 5 (𝑦 = 𝐵 → ( {𝑖 ∣ (𝑖𝐴𝑗𝑖 / 𝑥𝐵)} / 𝑥𝐵 = 𝑦 {𝑖 ∣ (𝑖𝐴𝑗𝑖 / 𝑥𝐵)} / 𝑥𝐵 = 𝐵))
1312raleqbi1dv 3405 . . . 4 (𝑦 = 𝐵 → (∀𝑗𝑦 {𝑖 ∣ (𝑖𝐴𝑗𝑖 / 𝑥𝐵)} / 𝑥𝐵 = 𝑦 ↔ ∀𝑗𝐵 {𝑖 ∣ (𝑖𝐴𝑗𝑖 / 𝑥𝐵)} / 𝑥𝐵 = 𝐵))
14 vex 3499 . . . . 5 𝑦 ∈ V
1514a1i 11 . . . 4 (Disj 𝑥𝐴 𝐵𝑦 ∈ V)
16 simplll 773 . . . . . . . . . . . . 13 ((((Disj 𝑥𝐴 𝐵𝑥𝐴) ∧ 𝑗𝐵) ∧ (𝑖𝐴𝑗𝑖 / 𝑥𝐵)) → Disj 𝑥𝐴 𝐵)
17 simpllr 774 . . . . . . . . . . . . 13 ((((Disj 𝑥𝐴 𝐵𝑥𝐴) ∧ 𝑗𝐵) ∧ (𝑖𝐴𝑗𝑖 / 𝑥𝐵)) → 𝑥𝐴)
18 simprl 769 . . . . . . . . . . . . 13 ((((Disj 𝑥𝐴 𝐵𝑥𝐴) ∧ 𝑗𝐵) ∧ (𝑖𝐴𝑗𝑖 / 𝑥𝐵)) → 𝑖𝐴)
19 simplr 767 . . . . . . . . . . . . 13 ((((Disj 𝑥𝐴 𝐵𝑥𝐴) ∧ 𝑗𝐵) ∧ (𝑖𝐴𝑗𝑖 / 𝑥𝐵)) → 𝑗𝐵)
20 simprr 771 . . . . . . . . . . . . 13 ((((Disj 𝑥𝐴 𝐵𝑥𝐴) ∧ 𝑗𝐵) ∧ (𝑖𝐴𝑗𝑖 / 𝑥𝐵)) → 𝑗𝑖 / 𝑥𝐵)
21 csbeq1a 3899 . . . . . . . . . . . . . 14 (𝑥 = 𝑖𝐵 = 𝑖 / 𝑥𝐵)
224, 21disjif 30330 . . . . . . . . . . . . 13 ((Disj 𝑥𝐴 𝐵 ∧ (𝑥𝐴𝑖𝐴) ∧ (𝑗𝐵𝑗𝑖 / 𝑥𝐵)) → 𝑥 = 𝑖)
2316, 17, 18, 19, 20, 22syl122anc 1375 . . . . . . . . . . . 12 ((((Disj 𝑥𝐴 𝐵𝑥𝐴) ∧ 𝑗𝐵) ∧ (𝑖𝐴𝑗𝑖 / 𝑥𝐵)) → 𝑥 = 𝑖)
24 simpr 487 . . . . . . . . . . . . . 14 ((((Disj 𝑥𝐴 𝐵𝑥𝐴) ∧ 𝑗𝐵) ∧ 𝑥 = 𝑖) → 𝑥 = 𝑖)
25 simpllr 774 . . . . . . . . . . . . . 14 ((((Disj 𝑥𝐴 𝐵𝑥𝐴) ∧ 𝑗𝐵) ∧ 𝑥 = 𝑖) → 𝑥𝐴)
2624, 25eqeltrrd 2916 . . . . . . . . . . . . 13 ((((Disj 𝑥𝐴 𝐵𝑥𝐴) ∧ 𝑗𝐵) ∧ 𝑥 = 𝑖) → 𝑖𝐴)
27 simplr 767 . . . . . . . . . . . . . 14 ((((Disj 𝑥𝐴 𝐵𝑥𝐴) ∧ 𝑗𝐵) ∧ 𝑥 = 𝑖) → 𝑗𝐵)
2821eleq2d 2900 . . . . . . . . . . . . . . 15 (𝑥 = 𝑖 → (𝑗𝐵𝑗𝑖 / 𝑥𝐵))
2924, 28syl 17 . . . . . . . . . . . . . 14 ((((Disj 𝑥𝐴 𝐵𝑥𝐴) ∧ 𝑗𝐵) ∧ 𝑥 = 𝑖) → (𝑗𝐵𝑗𝑖 / 𝑥𝐵))
3027, 29mpbid 234 . . . . . . . . . . . . 13 ((((Disj 𝑥𝐴 𝐵𝑥𝐴) ∧ 𝑗𝐵) ∧ 𝑥 = 𝑖) → 𝑗𝑖 / 𝑥𝐵)
3126, 30jca 514 . . . . . . . . . . . 12 ((((Disj 𝑥𝐴 𝐵𝑥𝐴) ∧ 𝑗𝐵) ∧ 𝑥 = 𝑖) → (𝑖𝐴𝑗𝑖 / 𝑥𝐵))
3223, 31impbida 799 . . . . . . . . . . 11 (((Disj 𝑥𝐴 𝐵𝑥𝐴) ∧ 𝑗𝐵) → ((𝑖𝐴𝑗𝑖 / 𝑥𝐵) ↔ 𝑥 = 𝑖))
33 equcom 2025 . . . . . . . . . . 11 (𝑥 = 𝑖𝑖 = 𝑥)
3432, 33syl6bb 289 . . . . . . . . . 10 (((Disj 𝑥𝐴 𝐵𝑥𝐴) ∧ 𝑗𝐵) → ((𝑖𝐴𝑗𝑖 / 𝑥𝐵) ↔ 𝑖 = 𝑥))
3534abbidv 2887 . . . . . . . . 9 (((Disj 𝑥𝐴 𝐵𝑥𝐴) ∧ 𝑗𝐵) → {𝑖 ∣ (𝑖𝐴𝑗𝑖 / 𝑥𝐵)} = {𝑖𝑖 = 𝑥})
36 df-sn 4570 . . . . . . . . 9 {𝑥} = {𝑖𝑖 = 𝑥}
3735, 36syl6eqr 2876 . . . . . . . 8 (((Disj 𝑥𝐴 𝐵𝑥𝐴) ∧ 𝑗𝐵) → {𝑖 ∣ (𝑖𝐴𝑗𝑖 / 𝑥𝐵)} = {𝑥})
3837unieqd 4854 . . . . . . 7 (((Disj 𝑥𝐴 𝐵𝑥𝐴) ∧ 𝑗𝐵) → {𝑖 ∣ (𝑖𝐴𝑗𝑖 / 𝑥𝐵)} = {𝑥})
39 vex 3499 . . . . . . . 8 𝑥 ∈ V
4039unisn 4860 . . . . . . 7 {𝑥} = 𝑥
4138, 40syl6eq 2874 . . . . . 6 (((Disj 𝑥𝐴 𝐵𝑥𝐴) ∧ 𝑗𝐵) → {𝑖 ∣ (𝑖𝐴𝑗𝑖 / 𝑥𝐵)} = 𝑥)
42 csbeq1 3888 . . . . . . 7 ( {𝑖 ∣ (𝑖𝐴𝑗𝑖 / 𝑥𝐵)} = 𝑥 {𝑖 ∣ (𝑖𝐴𝑗𝑖 / 𝑥𝐵)} / 𝑥𝐵 = 𝑥 / 𝑥𝐵)
43 csbid 3898 . . . . . . 7 𝑥 / 𝑥𝐵 = 𝐵
4442, 43syl6eq 2874 . . . . . 6 ( {𝑖 ∣ (𝑖𝐴𝑗𝑖 / 𝑥𝐵)} = 𝑥 {𝑖 ∣ (𝑖𝐴𝑗𝑖 / 𝑥𝐵)} / 𝑥𝐵 = 𝐵)
4541, 44syl 17 . . . . 5 (((Disj 𝑥𝐴 𝐵𝑥𝐴) ∧ 𝑗𝐵) → {𝑖 ∣ (𝑖𝐴𝑗𝑖 / 𝑥𝐵)} / 𝑥𝐵 = 𝐵)
4645ralrimiva 3184 . . . 4 ((Disj 𝑥𝐴 𝐵𝑥𝐴) → ∀𝑗𝐵 {𝑖 ∣ (𝑖𝐴𝑗𝑖 / 𝑥𝐵)} / 𝑥𝐵 = 𝐵)
471, 11, 13, 15, 46elabreximd 30272 . . 3 ((Disj 𝑥𝐴 𝐵𝑦 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}) → ∀𝑗𝑦 {𝑖 ∣ (𝑖𝐴𝑗𝑖 / 𝑥𝐵)} / 𝑥𝐵 = 𝑦)
4847ralrimiva 3184 . 2 (Disj 𝑥𝐴 𝐵 → ∀𝑦 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}∀𝑗𝑦 {𝑖 ∣ (𝑖𝐴𝑗𝑖 / 𝑥𝐵)} / 𝑥𝐵 = 𝑦)
49 invdisj 5052 . 2 (∀𝑦 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}∀𝑗𝑦 {𝑖 ∣ (𝑖𝐴𝑗𝑖 / 𝑥𝐵)} / 𝑥𝐵 = 𝑦Disj 𝑦 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}𝑦)
5048, 49syl 17 1 (Disj 𝑥𝐴 𝐵Disj 𝑦 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  {cab 2801  wral 3140  wrex 3141  Vcvv 3496  csb 3885  {csn 4569   cuni 4840  Disj wdisj 5033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-sn 4570  df-pr 4572  df-uni 4841  df-disj 5034
This theorem is referenced by:  disjrnmpt  30337
  Copyright terms: Public domain W3C validator