Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjeq1d Structured version   Visualization version   GIF version

Theorem disjeq1d 4626
 Description: Equality theorem for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016.)
Hypothesis
Ref Expression
disjeq1d.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
disjeq1d (𝜑 → (Disj 𝑥𝐴 𝐶Disj 𝑥𝐵 𝐶))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)

Proof of Theorem disjeq1d
StepHypRef Expression
1 disjeq1d.1 . 2 (𝜑𝐴 = 𝐵)
2 disjeq1 4625 . 2 (𝐴 = 𝐵 → (Disj 𝑥𝐴 𝐶Disj 𝑥𝐵 𝐶))
31, 2syl 17 1 (𝜑 → (Disj 𝑥𝐴 𝐶Disj 𝑥𝐵 𝐶))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   = wceq 1482  Disj wdisj 4618 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-rmo 2919  df-in 3579  df-ss 3586  df-disj 4619 This theorem is referenced by:  disjeq12d  4627  disjxiun  4647  disjxiunOLD  4648  disjdifprg  29372  disjdifprg2  29373  disjun0  29392  measxun2  30258  measssd  30263  meadjun  40448
 Copyright terms: Public domain W3C validator