![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > disjne | Structured version Visualization version GIF version |
Description: Members of disjoint sets are not equal. (Contributed by NM, 28-Mar-2007.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
disjne | ⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → 𝐶 ≠ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disj 4160 | . . 3 ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ ∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵) | |
2 | eleq1 2827 | . . . . . 6 ⊢ (𝑥 = 𝐶 → (𝑥 ∈ 𝐵 ↔ 𝐶 ∈ 𝐵)) | |
3 | 2 | notbid 307 | . . . . 5 ⊢ (𝑥 = 𝐶 → (¬ 𝑥 ∈ 𝐵 ↔ ¬ 𝐶 ∈ 𝐵)) |
4 | 3 | rspccva 3448 | . . . 4 ⊢ ((∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵 ∧ 𝐶 ∈ 𝐴) → ¬ 𝐶 ∈ 𝐵) |
5 | eleq1a 2834 | . . . . 5 ⊢ (𝐷 ∈ 𝐵 → (𝐶 = 𝐷 → 𝐶 ∈ 𝐵)) | |
6 | 5 | necon3bd 2946 | . . . 4 ⊢ (𝐷 ∈ 𝐵 → (¬ 𝐶 ∈ 𝐵 → 𝐶 ≠ 𝐷)) |
7 | 4, 6 | syl5com 31 | . . 3 ⊢ ((∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵 ∧ 𝐶 ∈ 𝐴) → (𝐷 ∈ 𝐵 → 𝐶 ≠ 𝐷)) |
8 | 1, 7 | sylanb 490 | . 2 ⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ 𝐶 ∈ 𝐴) → (𝐷 ∈ 𝐵 → 𝐶 ≠ 𝐷)) |
9 | 8 | 3impia 1110 | 1 ⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → 𝐶 ≠ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 ≠ wne 2932 ∀wral 3050 ∩ cin 3714 ∅c0 4058 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-v 3342 df-dif 3718 df-in 3722 df-nul 4059 |
This theorem is referenced by: brdom7disj 9545 brdom6disj 9546 frlmssuvc1 20335 frlmsslsp 20337 kelac1 38135 |
Copyright terms: Public domain | W3C validator |