Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjorf Structured version   Visualization version   GIF version

Theorem disjorf 29234
Description: Two ways to say that a collection 𝐵(𝑖) for 𝑖𝐴 is disjoint. (Contributed by Thierry Arnoux, 8-Mar-2017.)
Hypotheses
Ref Expression
disjorf.1 𝑖𝐴
disjorf.2 𝑗𝐴
disjorf.3 (𝑖 = 𝑗𝐵 = 𝐶)
Assertion
Ref Expression
disjorf (Disj 𝑖𝐴 𝐵 ↔ ∀𝑖𝐴𝑗𝐴 (𝑖 = 𝑗 ∨ (𝐵𝐶) = ∅))
Distinct variable groups:   𝑖,𝑗   𝐵,𝑗   𝐶,𝑖
Allowed substitution hints:   𝐴(𝑖,𝑗)   𝐵(𝑖)   𝐶(𝑗)

Proof of Theorem disjorf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-disj 4584 . 2 (Disj 𝑖𝐴 𝐵 ↔ ∀𝑥∃*𝑖𝐴 𝑥𝐵)
2 ralcom4 3210 . . 3 (∀𝑖𝐴𝑥𝑗𝐴 ((𝑥𝐵𝑥𝐶) → 𝑖 = 𝑗) ↔ ∀𝑥𝑖𝐴𝑗𝐴 ((𝑥𝐵𝑥𝐶) → 𝑖 = 𝑗))
3 orcom 402 . . . . . . 7 ((𝑖 = 𝑗 ∨ (𝐵𝐶) = ∅) ↔ ((𝐵𝐶) = ∅ ∨ 𝑖 = 𝑗))
4 df-or 385 . . . . . . 7 (((𝐵𝐶) = ∅ ∨ 𝑖 = 𝑗) ↔ (¬ (𝐵𝐶) = ∅ → 𝑖 = 𝑗))
5 neq0 3906 . . . . . . . . . 10 (¬ (𝐵𝐶) = ∅ ↔ ∃𝑥 𝑥 ∈ (𝐵𝐶))
6 elin 3774 . . . . . . . . . . 11 (𝑥 ∈ (𝐵𝐶) ↔ (𝑥𝐵𝑥𝐶))
76exbii 1771 . . . . . . . . . 10 (∃𝑥 𝑥 ∈ (𝐵𝐶) ↔ ∃𝑥(𝑥𝐵𝑥𝐶))
85, 7bitri 264 . . . . . . . . 9 (¬ (𝐵𝐶) = ∅ ↔ ∃𝑥(𝑥𝐵𝑥𝐶))
98imbi1i 339 . . . . . . . 8 ((¬ (𝐵𝐶) = ∅ → 𝑖 = 𝑗) ↔ (∃𝑥(𝑥𝐵𝑥𝐶) → 𝑖 = 𝑗))
10 19.23v 1899 . . . . . . . 8 (∀𝑥((𝑥𝐵𝑥𝐶) → 𝑖 = 𝑗) ↔ (∃𝑥(𝑥𝐵𝑥𝐶) → 𝑖 = 𝑗))
119, 10bitr4i 267 . . . . . . 7 ((¬ (𝐵𝐶) = ∅ → 𝑖 = 𝑗) ↔ ∀𝑥((𝑥𝐵𝑥𝐶) → 𝑖 = 𝑗))
123, 4, 113bitri 286 . . . . . 6 ((𝑖 = 𝑗 ∨ (𝐵𝐶) = ∅) ↔ ∀𝑥((𝑥𝐵𝑥𝐶) → 𝑖 = 𝑗))
1312ralbii 2974 . . . . 5 (∀𝑗𝐴 (𝑖 = 𝑗 ∨ (𝐵𝐶) = ∅) ↔ ∀𝑗𝐴𝑥((𝑥𝐵𝑥𝐶) → 𝑖 = 𝑗))
14 ralcom4 3210 . . . . 5 (∀𝑗𝐴𝑥((𝑥𝐵𝑥𝐶) → 𝑖 = 𝑗) ↔ ∀𝑥𝑗𝐴 ((𝑥𝐵𝑥𝐶) → 𝑖 = 𝑗))
1513, 14bitri 264 . . . 4 (∀𝑗𝐴 (𝑖 = 𝑗 ∨ (𝐵𝐶) = ∅) ↔ ∀𝑥𝑗𝐴 ((𝑥𝐵𝑥𝐶) → 𝑖 = 𝑗))
1615ralbii 2974 . . 3 (∀𝑖𝐴𝑗𝐴 (𝑖 = 𝑗 ∨ (𝐵𝐶) = ∅) ↔ ∀𝑖𝐴𝑥𝑗𝐴 ((𝑥𝐵𝑥𝐶) → 𝑖 = 𝑗))
17 disjorf.1 . . . . 5 𝑖𝐴
18 disjorf.2 . . . . 5 𝑗𝐴
19 nfv 1840 . . . . 5 𝑖 𝑥𝐶
20 disjorf.3 . . . . . 6 (𝑖 = 𝑗𝐵 = 𝐶)
2120eleq2d 2684 . . . . 5 (𝑖 = 𝑗 → (𝑥𝐵𝑥𝐶))
2217, 18, 19, 21rmo4f 29183 . . . 4 (∃*𝑖𝐴 𝑥𝐵 ↔ ∀𝑖𝐴𝑗𝐴 ((𝑥𝐵𝑥𝐶) → 𝑖 = 𝑗))
2322albii 1744 . . 3 (∀𝑥∃*𝑖𝐴 𝑥𝐵 ↔ ∀𝑥𝑖𝐴𝑗𝐴 ((𝑥𝐵𝑥𝐶) → 𝑖 = 𝑗))
242, 16, 233bitr4i 292 . 2 (∀𝑖𝐴𝑗𝐴 (𝑖 = 𝑗 ∨ (𝐵𝐶) = ∅) ↔ ∀𝑥∃*𝑖𝐴 𝑥𝐵)
251, 24bitr4i 267 1 (Disj 𝑖𝐴 𝐵 ↔ ∀𝑖𝐴𝑗𝐴 (𝑖 = 𝑗 ∨ (𝐵𝐶) = ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  wal 1478   = wceq 1480  wex 1701  wcel 1987  wnfc 2748  wral 2907  ∃*wrmo 2910  cin 3554  c0 3891  Disj wdisj 4583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ral 2912  df-rmo 2915  df-v 3188  df-dif 3558  df-in 3562  df-nul 3892  df-disj 4584
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator