MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjpr2 Structured version   Visualization version   GIF version

Theorem disjpr2 4392
Description: Two completely distinct unordered pairs are disjoint. (Contributed by Alexander van der Vekens, 11-Nov-2017.) (Proof shortened by JJ, 23-Jul-2021.)
Assertion
Ref Expression
disjpr2 (((𝐴𝐶𝐵𝐶) ∧ (𝐴𝐷𝐵𝐷)) → ({𝐴, 𝐵} ∩ {𝐶, 𝐷}) = ∅)

Proof of Theorem disjpr2
StepHypRef Expression
1 df-pr 4324 . . . 4 {𝐶, 𝐷} = ({𝐶} ∪ {𝐷})
21ineq2i 3954 . . 3 ({𝐴, 𝐵} ∩ {𝐶, 𝐷}) = ({𝐴, 𝐵} ∩ ({𝐶} ∪ {𝐷}))
3 indi 4016 . . 3 ({𝐴, 𝐵} ∩ ({𝐶} ∪ {𝐷})) = (({𝐴, 𝐵} ∩ {𝐶}) ∪ ({𝐴, 𝐵} ∩ {𝐷}))
42, 3eqtri 2782 . 2 ({𝐴, 𝐵} ∩ {𝐶, 𝐷}) = (({𝐴, 𝐵} ∩ {𝐶}) ∪ ({𝐴, 𝐵} ∩ {𝐷}))
5 df-pr 4324 . . . . . . . 8 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
65ineq1i 3953 . . . . . . 7 ({𝐴, 𝐵} ∩ {𝐶}) = (({𝐴} ∪ {𝐵}) ∩ {𝐶})
7 indir 4018 . . . . . . 7 (({𝐴} ∪ {𝐵}) ∩ {𝐶}) = (({𝐴} ∩ {𝐶}) ∪ ({𝐵} ∩ {𝐶}))
86, 7eqtri 2782 . . . . . 6 ({𝐴, 𝐵} ∩ {𝐶}) = (({𝐴} ∩ {𝐶}) ∪ ({𝐵} ∩ {𝐶}))
9 disjsn2 4391 . . . . . . . 8 (𝐴𝐶 → ({𝐴} ∩ {𝐶}) = ∅)
10 disjsn2 4391 . . . . . . . 8 (𝐵𝐶 → ({𝐵} ∩ {𝐶}) = ∅)
119, 10anim12i 591 . . . . . . 7 ((𝐴𝐶𝐵𝐶) → (({𝐴} ∩ {𝐶}) = ∅ ∧ ({𝐵} ∩ {𝐶}) = ∅))
12 un00 4154 . . . . . . 7 ((({𝐴} ∩ {𝐶}) = ∅ ∧ ({𝐵} ∩ {𝐶}) = ∅) ↔ (({𝐴} ∩ {𝐶}) ∪ ({𝐵} ∩ {𝐶})) = ∅)
1311, 12sylib 208 . . . . . 6 ((𝐴𝐶𝐵𝐶) → (({𝐴} ∩ {𝐶}) ∪ ({𝐵} ∩ {𝐶})) = ∅)
148, 13syl5eq 2806 . . . . 5 ((𝐴𝐶𝐵𝐶) → ({𝐴, 𝐵} ∩ {𝐶}) = ∅)
1514adantr 472 . . . 4 (((𝐴𝐶𝐵𝐶) ∧ (𝐴𝐷𝐵𝐷)) → ({𝐴, 𝐵} ∩ {𝐶}) = ∅)
165ineq1i 3953 . . . . . . 7 ({𝐴, 𝐵} ∩ {𝐷}) = (({𝐴} ∪ {𝐵}) ∩ {𝐷})
17 indir 4018 . . . . . . 7 (({𝐴} ∪ {𝐵}) ∩ {𝐷}) = (({𝐴} ∩ {𝐷}) ∪ ({𝐵} ∩ {𝐷}))
1816, 17eqtri 2782 . . . . . 6 ({𝐴, 𝐵} ∩ {𝐷}) = (({𝐴} ∩ {𝐷}) ∪ ({𝐵} ∩ {𝐷}))
19 disjsn2 4391 . . . . . . . 8 (𝐴𝐷 → ({𝐴} ∩ {𝐷}) = ∅)
20 disjsn2 4391 . . . . . . . 8 (𝐵𝐷 → ({𝐵} ∩ {𝐷}) = ∅)
2119, 20anim12i 591 . . . . . . 7 ((𝐴𝐷𝐵𝐷) → (({𝐴} ∩ {𝐷}) = ∅ ∧ ({𝐵} ∩ {𝐷}) = ∅))
22 un00 4154 . . . . . . 7 ((({𝐴} ∩ {𝐷}) = ∅ ∧ ({𝐵} ∩ {𝐷}) = ∅) ↔ (({𝐴} ∩ {𝐷}) ∪ ({𝐵} ∩ {𝐷})) = ∅)
2321, 22sylib 208 . . . . . 6 ((𝐴𝐷𝐵𝐷) → (({𝐴} ∩ {𝐷}) ∪ ({𝐵} ∩ {𝐷})) = ∅)
2418, 23syl5eq 2806 . . . . 5 ((𝐴𝐷𝐵𝐷) → ({𝐴, 𝐵} ∩ {𝐷}) = ∅)
2524adantl 473 . . . 4 (((𝐴𝐶𝐵𝐶) ∧ (𝐴𝐷𝐵𝐷)) → ({𝐴, 𝐵} ∩ {𝐷}) = ∅)
2615, 25uneq12d 3911 . . 3 (((𝐴𝐶𝐵𝐶) ∧ (𝐴𝐷𝐵𝐷)) → (({𝐴, 𝐵} ∩ {𝐶}) ∪ ({𝐴, 𝐵} ∩ {𝐷})) = (∅ ∪ ∅))
27 un0 4110 . . 3 (∅ ∪ ∅) = ∅
2826, 27syl6eq 2810 . 2 (((𝐴𝐶𝐵𝐶) ∧ (𝐴𝐷𝐵𝐷)) → (({𝐴, 𝐵} ∩ {𝐶}) ∪ ({𝐴, 𝐵} ∩ {𝐷})) = ∅)
294, 28syl5eq 2806 1 (((𝐴𝐶𝐵𝐶) ∧ (𝐴𝐷𝐵𝐷)) → ({𝐴, 𝐵} ∩ {𝐶, 𝐷}) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1632  wne 2932  cun 3713  cin 3714  c0 4058  {csn 4321  {cpr 4323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-v 3342  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-sn 4322  df-pr 4324
This theorem is referenced by:  disjprsn  4394  disjtp2  4396  funcnvqp  6113  funcnvqpOLD  6114
  Copyright terms: Public domain W3C validator