MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjpss Structured version   Visualization version   GIF version

Theorem disjpss 4410
Description: A class is a proper subset of its union with a disjoint nonempty class. (Contributed by NM, 15-Sep-2004.)
Assertion
Ref Expression
disjpss (((𝐴𝐵) = ∅ ∧ 𝐵 ≠ ∅) → 𝐴 ⊊ (𝐴𝐵))

Proof of Theorem disjpss
StepHypRef Expression
1 ssid 3989 . . . . . . . 8 𝐵𝐵
21biantru 532 . . . . . . 7 (𝐵𝐴 ↔ (𝐵𝐴𝐵𝐵))
3 ssin 4207 . . . . . . 7 ((𝐵𝐴𝐵𝐵) ↔ 𝐵 ⊆ (𝐴𝐵))
42, 3bitri 277 . . . . . 6 (𝐵𝐴𝐵 ⊆ (𝐴𝐵))
5 sseq2 3993 . . . . . 6 ((𝐴𝐵) = ∅ → (𝐵 ⊆ (𝐴𝐵) ↔ 𝐵 ⊆ ∅))
64, 5syl5bb 285 . . . . 5 ((𝐴𝐵) = ∅ → (𝐵𝐴𝐵 ⊆ ∅))
7 ss0 4352 . . . . 5 (𝐵 ⊆ ∅ → 𝐵 = ∅)
86, 7syl6bi 255 . . . 4 ((𝐴𝐵) = ∅ → (𝐵𝐴𝐵 = ∅))
98necon3ad 3029 . . 3 ((𝐴𝐵) = ∅ → (𝐵 ≠ ∅ → ¬ 𝐵𝐴))
109imp 409 . 2 (((𝐴𝐵) = ∅ ∧ 𝐵 ≠ ∅) → ¬ 𝐵𝐴)
11 nsspssun 4234 . . 3 𝐵𝐴𝐴 ⊊ (𝐵𝐴))
12 uncom 4129 . . . 4 (𝐵𝐴) = (𝐴𝐵)
1312psseq2i 4067 . . 3 (𝐴 ⊊ (𝐵𝐴) ↔ 𝐴 ⊊ (𝐴𝐵))
1411, 13bitri 277 . 2 𝐵𝐴𝐴 ⊊ (𝐴𝐵))
1510, 14sylib 220 1 (((𝐴𝐵) = ∅ ∧ 𝐵 ≠ ∅) → 𝐴 ⊊ (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1533  wne 3016  cun 3934  cin 3935  wss 3936  wpss 3937  c0 4291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-v 3497  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292
This theorem is referenced by:  omsucne  7592  isfin1-3  9802
  Copyright terms: Public domain W3C validator