Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjrnmpt2 Structured version   Visualization version   GIF version

Theorem disjrnmpt2 38849
Description: Disjointness of the range of a function in map-to notation. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypothesis
Ref Expression
disjrnmpt2.1 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
disjrnmpt2 (Disj 𝑥𝐴 𝐵Disj 𝑦 ∈ ran 𝐹 𝑦)
Distinct variable groups:   𝑥,𝐴   𝑦,𝐹
Allowed substitution hints:   𝐴(𝑦)   𝐵(𝑥,𝑦)   𝐹(𝑥)

Proof of Theorem disjrnmpt2
Dummy variables 𝑢 𝑧 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . . . . . 7 (𝑦 = 𝑤𝑦 = 𝑤)
21cbvdisjv 4594 . . . . . 6 (Disj 𝑦 ∈ ran 𝐹 𝑦Disj 𝑤 ∈ ran 𝐹 𝑤)
32notbii 310 . . . . 5 Disj 𝑦 ∈ ran 𝐹 𝑦 ↔ ¬ Disj 𝑤 ∈ ran 𝐹 𝑤)
4 id 22 . . . . . . 7 (𝑤 = 𝑣𝑤 = 𝑣)
54ndisj2 38703 . . . . . 6 Disj 𝑤 ∈ ran 𝐹 𝑤 ↔ ∃𝑤 ∈ ran 𝐹𝑣 ∈ ran 𝐹(𝑤𝑣 ∧ (𝑤𝑣) ≠ ∅))
65biimpi 206 . . . . 5 Disj 𝑤 ∈ ran 𝐹 𝑤 → ∃𝑤 ∈ ran 𝐹𝑣 ∈ ran 𝐹(𝑤𝑣 ∧ (𝑤𝑣) ≠ ∅))
73, 6sylbi 207 . . . 4 Disj 𝑦 ∈ ran 𝐹 𝑦 → ∃𝑤 ∈ ran 𝐹𝑣 ∈ ran 𝐹(𝑤𝑣 ∧ (𝑤𝑣) ≠ ∅))
8 disjrnmpt2.1 . . . . . . . . . . . . . 14 𝐹 = (𝑥𝐴𝐵)
98elrnmpt 5332 . . . . . . . . . . . . 13 (𝑤 ∈ ran 𝐹 → (𝑤 ∈ ran 𝐹 ↔ ∃𝑥𝐴 𝑤 = 𝐵))
109ibi 256 . . . . . . . . . . . 12 (𝑤 ∈ ran 𝐹 → ∃𝑥𝐴 𝑤 = 𝐵)
1110adantr 481 . . . . . . . . . . 11 ((𝑤 ∈ ran 𝐹𝑣 ∈ ran 𝐹) → ∃𝑥𝐴 𝑤 = 𝐵)
12 nfcv 2761 . . . . . . . . . . . . . . . 16 𝑧𝐵
13 nfcsb1v 3530 . . . . . . . . . . . . . . . 16 𝑥𝑧 / 𝑥𝐵
14 csbeq1a 3523 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧𝐵 = 𝑧 / 𝑥𝐵)
1512, 13, 14cbvmpt 4709 . . . . . . . . . . . . . . 15 (𝑥𝐴𝐵) = (𝑧𝐴𝑧 / 𝑥𝐵)
168, 15eqtri 2643 . . . . . . . . . . . . . 14 𝐹 = (𝑧𝐴𝑧 / 𝑥𝐵)
1716elrnmpt 5332 . . . . . . . . . . . . 13 (𝑣 ∈ ran 𝐹 → (𝑣 ∈ ran 𝐹 ↔ ∃𝑧𝐴 𝑣 = 𝑧 / 𝑥𝐵))
1817ibi 256 . . . . . . . . . . . 12 (𝑣 ∈ ran 𝐹 → ∃𝑧𝐴 𝑣 = 𝑧 / 𝑥𝐵)
1918adantl 482 . . . . . . . . . . 11 ((𝑤 ∈ ran 𝐹𝑣 ∈ ran 𝐹) → ∃𝑧𝐴 𝑣 = 𝑧 / 𝑥𝐵)
2011, 19jca 554 . . . . . . . . . 10 ((𝑤 ∈ ran 𝐹𝑣 ∈ ran 𝐹) → (∃𝑥𝐴 𝑤 = 𝐵 ∧ ∃𝑧𝐴 𝑣 = 𝑧 / 𝑥𝐵))
21 nfv 1840 . . . . . . . . . . 11 𝑧 𝑤 = 𝐵
22 nfcv 2761 . . . . . . . . . . . 12 𝑥𝑣
2322, 13nfeq 2772 . . . . . . . . . . 11 𝑥 𝑣 = 𝑧 / 𝑥𝐵
2421, 23reean 3096 . . . . . . . . . 10 (∃𝑥𝐴𝑧𝐴 (𝑤 = 𝐵𝑣 = 𝑧 / 𝑥𝐵) ↔ (∃𝑥𝐴 𝑤 = 𝐵 ∧ ∃𝑧𝐴 𝑣 = 𝑧 / 𝑥𝐵))
2520, 24sylibr 224 . . . . . . . . 9 ((𝑤 ∈ ran 𝐹𝑣 ∈ ran 𝐹) → ∃𝑥𝐴𝑧𝐴 (𝑤 = 𝐵𝑣 = 𝑧 / 𝑥𝐵))
2625adantr 481 . . . . . . . 8 (((𝑤 ∈ ran 𝐹𝑣 ∈ ran 𝐹) ∧ (𝑤𝑣 ∧ (𝑤𝑣) ≠ ∅)) → ∃𝑥𝐴𝑧𝐴 (𝑤 = 𝐵𝑣 = 𝑧 / 𝑥𝐵))
27 nfcv 2761 . . . . . . . . . . . 12 𝑥𝑤
28 nfmpt1 4707 . . . . . . . . . . . . . 14 𝑥(𝑥𝐴𝐵)
298, 28nfcxfr 2759 . . . . . . . . . . . . 13 𝑥𝐹
3029nfrn 5328 . . . . . . . . . . . 12 𝑥ran 𝐹
3127, 30nfel 2773 . . . . . . . . . . 11 𝑥 𝑤 ∈ ran 𝐹
3230nfcri 2755 . . . . . . . . . . 11 𝑥 𝑣 ∈ ran 𝐹
3331, 32nfan 1825 . . . . . . . . . 10 𝑥(𝑤 ∈ ran 𝐹𝑣 ∈ ran 𝐹)
34 nfv 1840 . . . . . . . . . 10 𝑥(𝑤𝑣 ∧ (𝑤𝑣) ≠ ∅)
3533, 34nfan 1825 . . . . . . . . 9 𝑥((𝑤 ∈ ran 𝐹𝑣 ∈ ran 𝐹) ∧ (𝑤𝑣 ∧ (𝑤𝑣) ≠ ∅))
36 simpll 789 . . . . . . . . . . . . . . . . . . 19 (((𝑤 = 𝐵𝑣 = 𝑧 / 𝑥𝐵) ∧ 𝑥 = 𝑧) → 𝑤 = 𝐵)
3714adantl 482 . . . . . . . . . . . . . . . . . . 19 (((𝑤 = 𝐵𝑣 = 𝑧 / 𝑥𝐵) ∧ 𝑥 = 𝑧) → 𝐵 = 𝑧 / 𝑥𝐵)
38 id 22 . . . . . . . . . . . . . . . . . . . . 21 (𝑣 = 𝑧 / 𝑥𝐵𝑣 = 𝑧 / 𝑥𝐵)
3938eqcomd 2627 . . . . . . . . . . . . . . . . . . . 20 (𝑣 = 𝑧 / 𝑥𝐵𝑧 / 𝑥𝐵 = 𝑣)
4039ad2antlr 762 . . . . . . . . . . . . . . . . . . 19 (((𝑤 = 𝐵𝑣 = 𝑧 / 𝑥𝐵) ∧ 𝑥 = 𝑧) → 𝑧 / 𝑥𝐵 = 𝑣)
4136, 37, 403eqtrd 2659 . . . . . . . . . . . . . . . . . 18 (((𝑤 = 𝐵𝑣 = 𝑧 / 𝑥𝐵) ∧ 𝑥 = 𝑧) → 𝑤 = 𝑣)
4241adantll 749 . . . . . . . . . . . . . . . . 17 (((𝑤𝑣 ∧ (𝑤 = 𝐵𝑣 = 𝑧 / 𝑥𝐵)) ∧ 𝑥 = 𝑧) → 𝑤 = 𝑣)
43 simpll 789 . . . . . . . . . . . . . . . . . 18 (((𝑤𝑣 ∧ (𝑤 = 𝐵𝑣 = 𝑧 / 𝑥𝐵)) ∧ 𝑥 = 𝑧) → 𝑤𝑣)
4443neneqd 2795 . . . . . . . . . . . . . . . . 17 (((𝑤𝑣 ∧ (𝑤 = 𝐵𝑣 = 𝑧 / 𝑥𝐵)) ∧ 𝑥 = 𝑧) → ¬ 𝑤 = 𝑣)
4542, 44pm2.65da 599 . . . . . . . . . . . . . . . 16 ((𝑤𝑣 ∧ (𝑤 = 𝐵𝑣 = 𝑧 / 𝑥𝐵)) → ¬ 𝑥 = 𝑧)
4645neqned 2797 . . . . . . . . . . . . . . 15 ((𝑤𝑣 ∧ (𝑤 = 𝐵𝑣 = 𝑧 / 𝑥𝐵)) → 𝑥𝑧)
4746adantlr 750 . . . . . . . . . . . . . 14 (((𝑤𝑣 ∧ (𝑤𝑣) ≠ ∅) ∧ (𝑤 = 𝐵𝑣 = 𝑧 / 𝑥𝐵)) → 𝑥𝑧)
48 id 22 . . . . . . . . . . . . . . . . . . 19 (𝑤 = 𝐵𝑤 = 𝐵)
4948eqcomd 2627 . . . . . . . . . . . . . . . . . 18 (𝑤 = 𝐵𝐵 = 𝑤)
5049ad2antrl 763 . . . . . . . . . . . . . . . . 17 (((𝑤𝑣) ≠ ∅ ∧ (𝑤 = 𝐵𝑣 = 𝑧 / 𝑥𝐵)) → 𝐵 = 𝑤)
5139ad2antll 764 . . . . . . . . . . . . . . . . 17 (((𝑤𝑣) ≠ ∅ ∧ (𝑤 = 𝐵𝑣 = 𝑧 / 𝑥𝐵)) → 𝑧 / 𝑥𝐵 = 𝑣)
5250, 51ineq12d 3793 . . . . . . . . . . . . . . . 16 (((𝑤𝑣) ≠ ∅ ∧ (𝑤 = 𝐵𝑣 = 𝑧 / 𝑥𝐵)) → (𝐵𝑧 / 𝑥𝐵) = (𝑤𝑣))
53 simpl 473 . . . . . . . . . . . . . . . 16 (((𝑤𝑣) ≠ ∅ ∧ (𝑤 = 𝐵𝑣 = 𝑧 / 𝑥𝐵)) → (𝑤𝑣) ≠ ∅)
5452, 53eqnetrd 2857 . . . . . . . . . . . . . . 15 (((𝑤𝑣) ≠ ∅ ∧ (𝑤 = 𝐵𝑣 = 𝑧 / 𝑥𝐵)) → (𝐵𝑧 / 𝑥𝐵) ≠ ∅)
5554adantll 749 . . . . . . . . . . . . . 14 (((𝑤𝑣 ∧ (𝑤𝑣) ≠ ∅) ∧ (𝑤 = 𝐵𝑣 = 𝑧 / 𝑥𝐵)) → (𝐵𝑧 / 𝑥𝐵) ≠ ∅)
5647, 55jca 554 . . . . . . . . . . . . 13 (((𝑤𝑣 ∧ (𝑤𝑣) ≠ ∅) ∧ (𝑤 = 𝐵𝑣 = 𝑧 / 𝑥𝐵)) → (𝑥𝑧 ∧ (𝐵𝑧 / 𝑥𝐵) ≠ ∅))
5756ex 450 . . . . . . . . . . . 12 ((𝑤𝑣 ∧ (𝑤𝑣) ≠ ∅) → ((𝑤 = 𝐵𝑣 = 𝑧 / 𝑥𝐵) → (𝑥𝑧 ∧ (𝐵𝑧 / 𝑥𝐵) ≠ ∅)))
5857adantl 482 . . . . . . . . . . 11 (((𝑤 ∈ ran 𝐹𝑣 ∈ ran 𝐹) ∧ (𝑤𝑣 ∧ (𝑤𝑣) ≠ ∅)) → ((𝑤 = 𝐵𝑣 = 𝑧 / 𝑥𝐵) → (𝑥𝑧 ∧ (𝐵𝑧 / 𝑥𝐵) ≠ ∅)))
5958reximdv 3010 . . . . . . . . . 10 (((𝑤 ∈ ran 𝐹𝑣 ∈ ran 𝐹) ∧ (𝑤𝑣 ∧ (𝑤𝑣) ≠ ∅)) → (∃𝑧𝐴 (𝑤 = 𝐵𝑣 = 𝑧 / 𝑥𝐵) → ∃𝑧𝐴 (𝑥𝑧 ∧ (𝐵𝑧 / 𝑥𝐵) ≠ ∅)))
6059a1d 25 . . . . . . . . 9 (((𝑤 ∈ ran 𝐹𝑣 ∈ ran 𝐹) ∧ (𝑤𝑣 ∧ (𝑤𝑣) ≠ ∅)) → (𝑥𝐴 → (∃𝑧𝐴 (𝑤 = 𝐵𝑣 = 𝑧 / 𝑥𝐵) → ∃𝑧𝐴 (𝑥𝑧 ∧ (𝐵𝑧 / 𝑥𝐵) ≠ ∅))))
6135, 60reximdai 3006 . . . . . . . 8 (((𝑤 ∈ ran 𝐹𝑣 ∈ ran 𝐹) ∧ (𝑤𝑣 ∧ (𝑤𝑣) ≠ ∅)) → (∃𝑥𝐴𝑧𝐴 (𝑤 = 𝐵𝑣 = 𝑧 / 𝑥𝐵) → ∃𝑥𝐴𝑧𝐴 (𝑥𝑧 ∧ (𝐵𝑧 / 𝑥𝐵) ≠ ∅)))
6226, 61mpd 15 . . . . . . 7 (((𝑤 ∈ ran 𝐹𝑣 ∈ ran 𝐹) ∧ (𝑤𝑣 ∧ (𝑤𝑣) ≠ ∅)) → ∃𝑥𝐴𝑧𝐴 (𝑥𝑧 ∧ (𝐵𝑧 / 𝑥𝐵) ≠ ∅))
6362ex 450 . . . . . 6 ((𝑤 ∈ ran 𝐹𝑣 ∈ ran 𝐹) → ((𝑤𝑣 ∧ (𝑤𝑣) ≠ ∅) → ∃𝑥𝐴𝑧𝐴 (𝑥𝑧 ∧ (𝐵𝑧 / 𝑥𝐵) ≠ ∅)))
6463a1i 11 . . . . 5 Disj 𝑦 ∈ ran 𝐹 𝑦 → ((𝑤 ∈ ran 𝐹𝑣 ∈ ran 𝐹) → ((𝑤𝑣 ∧ (𝑤𝑣) ≠ ∅) → ∃𝑥𝐴𝑧𝐴 (𝑥𝑧 ∧ (𝐵𝑧 / 𝑥𝐵) ≠ ∅))))
6564rexlimdvv 3030 . . . 4 Disj 𝑦 ∈ ran 𝐹 𝑦 → (∃𝑤 ∈ ran 𝐹𝑣 ∈ ran 𝐹(𝑤𝑣 ∧ (𝑤𝑣) ≠ ∅) → ∃𝑥𝐴𝑧𝐴 (𝑥𝑧 ∧ (𝐵𝑧 / 𝑥𝐵) ≠ ∅)))
667, 65mpd 15 . . 3 Disj 𝑦 ∈ ran 𝐹 𝑦 → ∃𝑥𝐴𝑧𝐴 (𝑥𝑧 ∧ (𝐵𝑧 / 𝑥𝐵) ≠ ∅))
67 nfcv 2761 . . . . . 6 𝑢𝐵
68 nfcsb1v 3530 . . . . . 6 𝑥𝑢 / 𝑥𝐵
69 csbeq1a 3523 . . . . . 6 (𝑥 = 𝑢𝐵 = 𝑢 / 𝑥𝐵)
7067, 68, 69cbvdisj 4593 . . . . 5 (Disj 𝑥𝐴 𝐵Disj 𝑢𝐴 𝑢 / 𝑥𝐵)
7170notbii 310 . . . 4 Disj 𝑥𝐴 𝐵 ↔ ¬ Disj 𝑢𝐴 𝑢 / 𝑥𝐵)
72 csbeq1a 3523 . . . . . . 7 (𝑢 = 𝑧𝑢 / 𝑥𝐵 = 𝑧 / 𝑢𝑢 / 𝑥𝐵)
73 csbco 3524 . . . . . . . 8 𝑧 / 𝑢𝑢 / 𝑥𝐵 = 𝑧 / 𝑥𝐵
7473a1i 11 . . . . . . 7 (𝑢 = 𝑧𝑧 / 𝑢𝑢 / 𝑥𝐵 = 𝑧 / 𝑥𝐵)
7572, 74eqtrd 2655 . . . . . 6 (𝑢 = 𝑧𝑢 / 𝑥𝐵 = 𝑧 / 𝑥𝐵)
7675ndisj2 38703 . . . . 5 Disj 𝑢𝐴 𝑢 / 𝑥𝐵 ↔ ∃𝑢𝐴𝑧𝐴 (𝑢𝑧 ∧ (𝑢 / 𝑥𝐵𝑧 / 𝑥𝐵) ≠ ∅))
77 nfcv 2761 . . . . . . 7 𝑥𝐴
78 nfv 1840 . . . . . . . 8 𝑥 𝑢𝑧
7968, 13nfin 3798 . . . . . . . . 9 𝑥(𝑢 / 𝑥𝐵𝑧 / 𝑥𝐵)
80 nfcv 2761 . . . . . . . . 9 𝑥
8179, 80nfne 2890 . . . . . . . 8 𝑥(𝑢 / 𝑥𝐵𝑧 / 𝑥𝐵) ≠ ∅
8278, 81nfan 1825 . . . . . . 7 𝑥(𝑢𝑧 ∧ (𝑢 / 𝑥𝐵𝑧 / 𝑥𝐵) ≠ ∅)
8377, 82nfrex 3001 . . . . . 6 𝑥𝑧𝐴 (𝑢𝑧 ∧ (𝑢 / 𝑥𝐵𝑧 / 𝑥𝐵) ≠ ∅)
84 nfv 1840 . . . . . 6 𝑢𝑧𝐴 (𝑥𝑧 ∧ (𝐵𝑧 / 𝑥𝐵) ≠ ∅)
85 neeq1 2852 . . . . . . . 8 (𝑢 = 𝑥 → (𝑢𝑧𝑥𝑧))
86 csbeq1 3517 . . . . . . . . . . 11 (𝑢 = 𝑥𝑢 / 𝑥𝐵 = 𝑥 / 𝑥𝐵)
87 csbid 3522 . . . . . . . . . . . 12 𝑥 / 𝑥𝐵 = 𝐵
8887a1i 11 . . . . . . . . . . 11 (𝑢 = 𝑥𝑥 / 𝑥𝐵 = 𝐵)
8986, 88eqtrd 2655 . . . . . . . . . 10 (𝑢 = 𝑥𝑢 / 𝑥𝐵 = 𝐵)
9089ineq1d 3791 . . . . . . . . 9 (𝑢 = 𝑥 → (𝑢 / 𝑥𝐵𝑧 / 𝑥𝐵) = (𝐵𝑧 / 𝑥𝐵))
9190neeq1d 2849 . . . . . . . 8 (𝑢 = 𝑥 → ((𝑢 / 𝑥𝐵𝑧 / 𝑥𝐵) ≠ ∅ ↔ (𝐵𝑧 / 𝑥𝐵) ≠ ∅))
9285, 91anbi12d 746 . . . . . . 7 (𝑢 = 𝑥 → ((𝑢𝑧 ∧ (𝑢 / 𝑥𝐵𝑧 / 𝑥𝐵) ≠ ∅) ↔ (𝑥𝑧 ∧ (𝐵𝑧 / 𝑥𝐵) ≠ ∅)))
9392rexbidv 3045 . . . . . 6 (𝑢 = 𝑥 → (∃𝑧𝐴 (𝑢𝑧 ∧ (𝑢 / 𝑥𝐵𝑧 / 𝑥𝐵) ≠ ∅) ↔ ∃𝑧𝐴 (𝑥𝑧 ∧ (𝐵𝑧 / 𝑥𝐵) ≠ ∅)))
9483, 84, 93cbvrex 3156 . . . . 5 (∃𝑢𝐴𝑧𝐴 (𝑢𝑧 ∧ (𝑢 / 𝑥𝐵𝑧 / 𝑥𝐵) ≠ ∅) ↔ ∃𝑥𝐴𝑧𝐴 (𝑥𝑧 ∧ (𝐵𝑧 / 𝑥𝐵) ≠ ∅))
9576, 94bitri 264 . . . 4 Disj 𝑢𝐴 𝑢 / 𝑥𝐵 ↔ ∃𝑥𝐴𝑧𝐴 (𝑥𝑧 ∧ (𝐵𝑧 / 𝑥𝐵) ≠ ∅))
9671, 95bitri 264 . . 3 Disj 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴𝑧𝐴 (𝑥𝑧 ∧ (𝐵𝑧 / 𝑥𝐵) ≠ ∅))
9766, 96sylibr 224 . 2 Disj 𝑦 ∈ ran 𝐹 𝑦 → ¬ Disj 𝑥𝐴 𝐵)
9897con4i 113 1 (Disj 𝑥𝐴 𝐵Disj 𝑦 ∈ ran 𝐹 𝑦)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1480  wcel 1987  wne 2790  wrex 2908  csb 3514  cin 3554  c0 3891  Disj wdisj 4583  cmpt 4673  ran crn 5075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pr 4867
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-sn 4149  df-pr 4151  df-op 4155  df-disj 4584  df-br 4614  df-opab 4674  df-mpt 4675  df-cnv 5082  df-dm 5084  df-rn 5085
This theorem is referenced by:  meadjiun  39990
  Copyright terms: Public domain W3C validator