MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjssun Structured version   Visualization version   GIF version

Theorem disjssun 4014
Description: Subset relation for disjoint classes. (Contributed by NM, 25-Oct-2005.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
disjssun ((𝐴𝐵) = ∅ → (𝐴 ⊆ (𝐵𝐶) ↔ 𝐴𝐶))

Proof of Theorem disjssun
StepHypRef Expression
1 uneq2 3745 . . . 4 ((𝐴𝐵) = ∅ → ((𝐴𝐶) ∪ (𝐴𝐵)) = ((𝐴𝐶) ∪ ∅))
2 indi 3855 . . . . 5 (𝐴 ∩ (𝐵𝐶)) = ((𝐴𝐵) ∪ (𝐴𝐶))
32equncomi 3743 . . . 4 (𝐴 ∩ (𝐵𝐶)) = ((𝐴𝐶) ∪ (𝐴𝐵))
4 un0 3945 . . . . 5 ((𝐴𝐶) ∪ ∅) = (𝐴𝐶)
54eqcomi 2630 . . . 4 (𝐴𝐶) = ((𝐴𝐶) ∪ ∅)
61, 3, 53eqtr4g 2680 . . 3 ((𝐴𝐵) = ∅ → (𝐴 ∩ (𝐵𝐶)) = (𝐴𝐶))
76eqeq1d 2623 . 2 ((𝐴𝐵) = ∅ → ((𝐴 ∩ (𝐵𝐶)) = 𝐴 ↔ (𝐴𝐶) = 𝐴))
8 df-ss 3574 . 2 (𝐴 ⊆ (𝐵𝐶) ↔ (𝐴 ∩ (𝐵𝐶)) = 𝐴)
9 df-ss 3574 . 2 (𝐴𝐶 ↔ (𝐴𝐶) = 𝐴)
107, 8, 93bitr4g 303 1 ((𝐴𝐵) = ∅ → (𝐴 ⊆ (𝐵𝐶) ↔ 𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1480  cun 3558  cin 3559  wss 3560  c0 3897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-v 3192  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3898
This theorem is referenced by:  hashbclem  13190  alexsubALTlem2  21792  iccntr  22564  reconnlem1  22569  dvne0  23712
  Copyright terms: Public domain W3C validator