![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > disjtpsn | Structured version Visualization version GIF version |
Description: The disjoint intersection of an unordered triple and a singleton. (Contributed by AV, 14-Nov-2021.) |
Ref | Expression |
---|---|
disjtpsn | ⊢ ((𝐴 ≠ 𝐷 ∧ 𝐵 ≠ 𝐷 ∧ 𝐶 ≠ 𝐷) → ({𝐴, 𝐵, 𝐶} ∩ {𝐷}) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-tp 4215 | . . 3 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | |
2 | 1 | ineq1i 3843 | . 2 ⊢ ({𝐴, 𝐵, 𝐶} ∩ {𝐷}) = (({𝐴, 𝐵} ∪ {𝐶}) ∩ {𝐷}) |
3 | disjprsn 4282 | . . . . 5 ⊢ ((𝐴 ≠ 𝐷 ∧ 𝐵 ≠ 𝐷) → ({𝐴, 𝐵} ∩ {𝐷}) = ∅) | |
4 | 3 | 3adant3 1101 | . . . 4 ⊢ ((𝐴 ≠ 𝐷 ∧ 𝐵 ≠ 𝐷 ∧ 𝐶 ≠ 𝐷) → ({𝐴, 𝐵} ∩ {𝐷}) = ∅) |
5 | disjsn2 4279 | . . . . 5 ⊢ (𝐶 ≠ 𝐷 → ({𝐶} ∩ {𝐷}) = ∅) | |
6 | 5 | 3ad2ant3 1104 | . . . 4 ⊢ ((𝐴 ≠ 𝐷 ∧ 𝐵 ≠ 𝐷 ∧ 𝐶 ≠ 𝐷) → ({𝐶} ∩ {𝐷}) = ∅) |
7 | 4, 6 | jca 553 | . . 3 ⊢ ((𝐴 ≠ 𝐷 ∧ 𝐵 ≠ 𝐷 ∧ 𝐶 ≠ 𝐷) → (({𝐴, 𝐵} ∩ {𝐷}) = ∅ ∧ ({𝐶} ∩ {𝐷}) = ∅)) |
8 | undisj1 4062 | . . 3 ⊢ ((({𝐴, 𝐵} ∩ {𝐷}) = ∅ ∧ ({𝐶} ∩ {𝐷}) = ∅) ↔ (({𝐴, 𝐵} ∪ {𝐶}) ∩ {𝐷}) = ∅) | |
9 | 7, 8 | sylib 208 | . 2 ⊢ ((𝐴 ≠ 𝐷 ∧ 𝐵 ≠ 𝐷 ∧ 𝐶 ≠ 𝐷) → (({𝐴, 𝐵} ∪ {𝐶}) ∩ {𝐷}) = ∅) |
10 | 2, 9 | syl5eq 2697 | 1 ⊢ ((𝐴 ≠ 𝐷 ∧ 𝐵 ≠ 𝐷 ∧ 𝐶 ≠ 𝐷) → ({𝐴, 𝐵, 𝐶} ∩ {𝐷}) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1054 = wceq 1523 ≠ wne 2823 ∪ cun 3605 ∩ cin 3606 ∅c0 3948 {csn 4210 {cpr 4212 {ctp 4214 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-sn 4211 df-pr 4213 df-tp 4215 |
This theorem is referenced by: disjtp2 4284 cnfldfun 19806 |
Copyright terms: Public domain | W3C validator |