![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > disjxwrd | Structured version Visualization version GIF version |
Description: Sets of words are disjoint if each set contains extensions of distinct words of a fixed length. (Contributed by AV, 29-Jul-2018.) (Proof shortened by AV, 7-May-2020.) |
Ref | Expression |
---|---|
disjxwrd | ⊢ Disj 𝑦 ∈ 𝑊 {𝑥 ∈ Word 𝑉 ∣ (𝑥 substr 〈0, 𝑁〉) = 𝑦} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | invdisjrab 4791 | 1 ⊢ Disj 𝑦 ∈ 𝑊 {𝑥 ∈ Word 𝑉 ∣ (𝑥 substr 〈0, 𝑁〉) = 𝑦} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1632 {crab 3054 〈cop 4327 Disj wdisj 4772 (class class class)co 6813 0cc0 10128 Word cword 13477 substr csubstr 13481 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-disj 4773 |
This theorem is referenced by: disjxwwlksn 27022 disjxwwlkn 27031 |
Copyright terms: Public domain | W3C validator |