Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dispcmp Structured version   Visualization version   GIF version

Theorem dispcmp 29732
 Description: Every discrete space is paracompact. (Contributed by Thierry Arnoux, 7-Jan-2020.)
Assertion
Ref Expression
dispcmp (𝑋𝑉 → 𝒫 𝑋 ∈ Paracomp)

Proof of Theorem dispcmp
Dummy variables 𝑣 𝑦 𝑧 𝑢 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 distop 20723 . . 3 (𝑋𝑉 → 𝒫 𝑋 ∈ Top)
2 simpr 477 . . . . . . . . . . . 12 ((𝑥𝑋𝑢 = {𝑥}) → 𝑢 = {𝑥})
3 snelpwi 4878 . . . . . . . . . . . . 13 (𝑥𝑋 → {𝑥} ∈ 𝒫 𝑋)
43adantr 481 . . . . . . . . . . . 12 ((𝑥𝑋𝑢 = {𝑥}) → {𝑥} ∈ 𝒫 𝑋)
52, 4eqeltrd 2698 . . . . . . . . . . 11 ((𝑥𝑋𝑢 = {𝑥}) → 𝑢 ∈ 𝒫 𝑋)
65rexlimiva 3022 . . . . . . . . . 10 (∃𝑥𝑋 𝑢 = {𝑥} → 𝑢 ∈ 𝒫 𝑋)
76abssi 3661 . . . . . . . . 9 {𝑢 ∣ ∃𝑥𝑋 𝑢 = {𝑥}} ⊆ 𝒫 𝑋
8 simpl 473 . . . . . . . . . . . . . 14 ((𝑢 = 𝑣𝑥 = 𝑧) → 𝑢 = 𝑣)
9 simpr 477 . . . . . . . . . . . . . . 15 ((𝑢 = 𝑣𝑥 = 𝑧) → 𝑥 = 𝑧)
109sneqd 4165 . . . . . . . . . . . . . 14 ((𝑢 = 𝑣𝑥 = 𝑧) → {𝑥} = {𝑧})
118, 10eqeq12d 2636 . . . . . . . . . . . . 13 ((𝑢 = 𝑣𝑥 = 𝑧) → (𝑢 = {𝑥} ↔ 𝑣 = {𝑧}))
1211cbvrexdva 3169 . . . . . . . . . . . 12 (𝑢 = 𝑣 → (∃𝑥𝑋 𝑢 = {𝑥} ↔ ∃𝑧𝑋 𝑣 = {𝑧}))
1312cbvabv 2744 . . . . . . . . . . 11 {𝑢 ∣ ∃𝑥𝑋 𝑢 = {𝑥}} = {𝑣 ∣ ∃𝑧𝑋 𝑣 = {𝑧}}
1413dissnlocfin 21255 . . . . . . . . . 10 (𝑋𝑉 → {𝑢 ∣ ∃𝑥𝑋 𝑢 = {𝑥}} ∈ (LocFin‘𝒫 𝑋))
15 elpwg 4143 . . . . . . . . . 10 ({𝑢 ∣ ∃𝑥𝑋 𝑢 = {𝑥}} ∈ (LocFin‘𝒫 𝑋) → ({𝑢 ∣ ∃𝑥𝑋 𝑢 = {𝑥}} ∈ 𝒫 𝒫 𝑋 ↔ {𝑢 ∣ ∃𝑥𝑋 𝑢 = {𝑥}} ⊆ 𝒫 𝑋))
1614, 15syl 17 . . . . . . . . 9 (𝑋𝑉 → ({𝑢 ∣ ∃𝑥𝑋 𝑢 = {𝑥}} ∈ 𝒫 𝒫 𝑋 ↔ {𝑢 ∣ ∃𝑥𝑋 𝑢 = {𝑥}} ⊆ 𝒫 𝑋))
177, 16mpbiri 248 . . . . . . . 8 (𝑋𝑉 → {𝑢 ∣ ∃𝑥𝑋 𝑢 = {𝑥}} ∈ 𝒫 𝒫 𝑋)
1817ad2antrr 761 . . . . . . 7 (((𝑋𝑉𝑦 ∈ 𝒫 𝒫 𝑋) ∧ 𝑋 = 𝑦) → {𝑢 ∣ ∃𝑥𝑋 𝑢 = {𝑥}} ∈ 𝒫 𝒫 𝑋)
1914ad2antrr 761 . . . . . . 7 (((𝑋𝑉𝑦 ∈ 𝒫 𝒫 𝑋) ∧ 𝑋 = 𝑦) → {𝑢 ∣ ∃𝑥𝑋 𝑢 = {𝑥}} ∈ (LocFin‘𝒫 𝑋))
2018, 19elind 3781 . . . . . 6 (((𝑋𝑉𝑦 ∈ 𝒫 𝒫 𝑋) ∧ 𝑋 = 𝑦) → {𝑢 ∣ ∃𝑥𝑋 𝑢 = {𝑥}} ∈ (𝒫 𝒫 𝑋 ∩ (LocFin‘𝒫 𝑋)))
21 simpll 789 . . . . . . 7 (((𝑋𝑉𝑦 ∈ 𝒫 𝒫 𝑋) ∧ 𝑋 = 𝑦) → 𝑋𝑉)
22 simpr 477 . . . . . . . 8 (((𝑋𝑉𝑦 ∈ 𝒫 𝒫 𝑋) ∧ 𝑋 = 𝑦) → 𝑋 = 𝑦)
2322eqcomd 2627 . . . . . . 7 (((𝑋𝑉𝑦 ∈ 𝒫 𝒫 𝑋) ∧ 𝑋 = 𝑦) → 𝑦 = 𝑋)
2413dissnref 21254 . . . . . . 7 ((𝑋𝑉 𝑦 = 𝑋) → {𝑢 ∣ ∃𝑥𝑋 𝑢 = {𝑥}}Ref𝑦)
2521, 23, 24syl2anc 692 . . . . . 6 (((𝑋𝑉𝑦 ∈ 𝒫 𝒫 𝑋) ∧ 𝑋 = 𝑦) → {𝑢 ∣ ∃𝑥𝑋 𝑢 = {𝑥}}Ref𝑦)
26 breq1 4621 . . . . . . 7 (𝑧 = {𝑢 ∣ ∃𝑥𝑋 𝑢 = {𝑥}} → (𝑧Ref𝑦 ↔ {𝑢 ∣ ∃𝑥𝑋 𝑢 = {𝑥}}Ref𝑦))
2726rspcev 3298 . . . . . 6 (({𝑢 ∣ ∃𝑥𝑋 𝑢 = {𝑥}} ∈ (𝒫 𝒫 𝑋 ∩ (LocFin‘𝒫 𝑋)) ∧ {𝑢 ∣ ∃𝑥𝑋 𝑢 = {𝑥}}Ref𝑦) → ∃𝑧 ∈ (𝒫 𝒫 𝑋 ∩ (LocFin‘𝒫 𝑋))𝑧Ref𝑦)
2820, 25, 27syl2anc 692 . . . . 5 (((𝑋𝑉𝑦 ∈ 𝒫 𝒫 𝑋) ∧ 𝑋 = 𝑦) → ∃𝑧 ∈ (𝒫 𝒫 𝑋 ∩ (LocFin‘𝒫 𝑋))𝑧Ref𝑦)
2928ex 450 . . . 4 ((𝑋𝑉𝑦 ∈ 𝒫 𝒫 𝑋) → (𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝒫 𝑋 ∩ (LocFin‘𝒫 𝑋))𝑧Ref𝑦))
3029ralrimiva 2961 . . 3 (𝑋𝑉 → ∀𝑦 ∈ 𝒫 𝒫 𝑋(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝒫 𝑋 ∩ (LocFin‘𝒫 𝑋))𝑧Ref𝑦))
31 unipw 4884 . . . . 5 𝒫 𝑋 = 𝑋
3231eqcomi 2630 . . . 4 𝑋 = 𝒫 𝑋
3332iscref 29717 . . 3 (𝒫 𝑋 ∈ CovHasRef(LocFin‘𝒫 𝑋) ↔ (𝒫 𝑋 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝒫 𝑋(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝒫 𝑋 ∩ (LocFin‘𝒫 𝑋))𝑧Ref𝑦)))
341, 30, 33sylanbrc 697 . 2 (𝑋𝑉 → 𝒫 𝑋 ∈ CovHasRef(LocFin‘𝒫 𝑋))
35 ispcmp 29730 . 2 (𝒫 𝑋 ∈ Paracomp ↔ 𝒫 𝑋 ∈ CovHasRef(LocFin‘𝒫 𝑋))
3634, 35sylibr 224 1 (𝑋𝑉 → 𝒫 𝑋 ∈ Paracomp)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 384   = wceq 1480   ∈ wcel 1987  {cab 2607  ∀wral 2907  ∃wrex 2908   ∩ cin 3558   ⊆ wss 3559  𝒫 cpw 4135  {csn 4153  ∪ cuni 4407   class class class wbr 4618  ‘cfv 5852  Topctop 20630  Refcref 21228  LocFinclocfin 21230  CovHasRefccref 29715  Paracompcpcmp 29728 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3191  df-sbc 3422  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-om 7020  df-1o 7512  df-en 7908  df-fin 7911  df-top 20631  df-ref 21231  df-locfin 21233  df-cref 29716  df-pcmp 29729 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator