Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  distrlem5pr Structured version   Visualization version   GIF version

Theorem distrlem5pr 9887
 Description: Lemma for distributive law for positive reals. (Contributed by NM, 2-May-1996.) (Revised by Mario Carneiro, 14-Jun-2013.) (New usage is discouraged.)
Assertion
Ref Expression
distrlem5pr ((𝐴P𝐵P𝐶P) → ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)) ⊆ (𝐴 ·P (𝐵 +P 𝐶)))

Proof of Theorem distrlem5pr
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulclpr 9880 . . . . 5 ((𝐴P𝐵P) → (𝐴 ·P 𝐵) ∈ P)
213adant3 1101 . . . 4 ((𝐴P𝐵P𝐶P) → (𝐴 ·P 𝐵) ∈ P)
3 mulclpr 9880 . . . . 5 ((𝐴P𝐶P) → (𝐴 ·P 𝐶) ∈ P)
433adant2 1100 . . . 4 ((𝐴P𝐵P𝐶P) → (𝐴 ·P 𝐶) ∈ P)
5 df-plp 9843 . . . . 5 +P = (𝑥P, 𝑦P ↦ {𝑓 ∣ ∃𝑔𝑥𝑦 𝑓 = (𝑔 +Q )})
6 addclnq 9805 . . . . 5 ((𝑔QQ) → (𝑔 +Q ) ∈ Q)
75, 6genpelv 9860 . . . 4 (((𝐴 ·P 𝐵) ∈ P ∧ (𝐴 ·P 𝐶) ∈ P) → (𝑤 ∈ ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)) ↔ ∃𝑣 ∈ (𝐴 ·P 𝐵)∃𝑢 ∈ (𝐴 ·P 𝐶)𝑤 = (𝑣 +Q 𝑢)))
82, 4, 7syl2anc 694 . . 3 ((𝐴P𝐵P𝐶P) → (𝑤 ∈ ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)) ↔ ∃𝑣 ∈ (𝐴 ·P 𝐵)∃𝑢 ∈ (𝐴 ·P 𝐶)𝑤 = (𝑣 +Q 𝑢)))
9 df-mp 9844 . . . . . . . 8 ·P = (𝑤P, 𝑣P ↦ {𝑥 ∣ ∃𝑔𝑤𝑣 𝑥 = (𝑔 ·Q )})
10 mulclnq 9807 . . . . . . . 8 ((𝑔QQ) → (𝑔 ·Q ) ∈ Q)
119, 10genpelv 9860 . . . . . . 7 ((𝐴P𝐶P) → (𝑢 ∈ (𝐴 ·P 𝐶) ↔ ∃𝑓𝐴𝑧𝐶 𝑢 = (𝑓 ·Q 𝑧)))
12113adant2 1100 . . . . . 6 ((𝐴P𝐵P𝐶P) → (𝑢 ∈ (𝐴 ·P 𝐶) ↔ ∃𝑓𝐴𝑧𝐶 𝑢 = (𝑓 ·Q 𝑧)))
1312anbi2d 740 . . . . 5 ((𝐴P𝐵P𝐶P) → ((𝑣 ∈ (𝐴 ·P 𝐵) ∧ 𝑢 ∈ (𝐴 ·P 𝐶)) ↔ (𝑣 ∈ (𝐴 ·P 𝐵) ∧ ∃𝑓𝐴𝑧𝐶 𝑢 = (𝑓 ·Q 𝑧))))
14 df-mp 9844 . . . . . . . . 9 ·P = (𝑤P, 𝑣P ↦ {𝑓 ∣ ∃𝑔𝑤𝑣 𝑓 = (𝑔 ·Q )})
1514, 10genpelv 9860 . . . . . . . 8 ((𝐴P𝐵P) → (𝑣 ∈ (𝐴 ·P 𝐵) ↔ ∃𝑥𝐴𝑦𝐵 𝑣 = (𝑥 ·Q 𝑦)))
16153adant3 1101 . . . . . . 7 ((𝐴P𝐵P𝐶P) → (𝑣 ∈ (𝐴 ·P 𝐵) ↔ ∃𝑥𝐴𝑦𝐵 𝑣 = (𝑥 ·Q 𝑦)))
17 distrlem4pr 9886 . . . . . . . . . . . . . . 15 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (𝐴 ·P (𝐵 +P 𝐶)))
18 oveq12 6699 . . . . . . . . . . . . . . . . . 18 ((𝑣 = (𝑥 ·Q 𝑦) ∧ 𝑢 = (𝑓 ·Q 𝑧)) → (𝑣 +Q 𝑢) = ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)))
1918eqeq2d 2661 . . . . . . . . . . . . . . . . 17 ((𝑣 = (𝑥 ·Q 𝑦) ∧ 𝑢 = (𝑓 ·Q 𝑧)) → (𝑤 = (𝑣 +Q 𝑢) ↔ 𝑤 = ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧))))
20 eleq1 2718 . . . . . . . . . . . . . . . . 17 (𝑤 = ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) → (𝑤 ∈ (𝐴 ·P (𝐵 +P 𝐶)) ↔ ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (𝐴 ·P (𝐵 +P 𝐶))))
2119, 20syl6bi 243 . . . . . . . . . . . . . . . 16 ((𝑣 = (𝑥 ·Q 𝑦) ∧ 𝑢 = (𝑓 ·Q 𝑧)) → (𝑤 = (𝑣 +Q 𝑢) → (𝑤 ∈ (𝐴 ·P (𝐵 +P 𝐶)) ↔ ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (𝐴 ·P (𝐵 +P 𝐶)))))
2221imp 444 . . . . . . . . . . . . . . 15 (((𝑣 = (𝑥 ·Q 𝑦) ∧ 𝑢 = (𝑓 ·Q 𝑧)) ∧ 𝑤 = (𝑣 +Q 𝑢)) → (𝑤 ∈ (𝐴 ·P (𝐵 +P 𝐶)) ↔ ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (𝐴 ·P (𝐵 +P 𝐶))))
2317, 22syl5ibrcom 237 . . . . . . . . . . . . . 14 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → (((𝑣 = (𝑥 ·Q 𝑦) ∧ 𝑢 = (𝑓 ·Q 𝑧)) ∧ 𝑤 = (𝑣 +Q 𝑢)) → 𝑤 ∈ (𝐴 ·P (𝐵 +P 𝐶))))
2423exp4b 631 . . . . . . . . . . . . 13 ((𝐴P𝐵P𝐶P) → (((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶)) → ((𝑣 = (𝑥 ·Q 𝑦) ∧ 𝑢 = (𝑓 ·Q 𝑧)) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (𝐴 ·P (𝐵 +P 𝐶))))))
2524com3l 89 . . . . . . . . . . . 12 (((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶)) → ((𝑣 = (𝑥 ·Q 𝑦) ∧ 𝑢 = (𝑓 ·Q 𝑧)) → ((𝐴P𝐵P𝐶P) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (𝐴 ·P (𝐵 +P 𝐶))))))
2625exp4b 631 . . . . . . . . . . 11 ((𝑥𝐴𝑦𝐵) → ((𝑓𝐴𝑧𝐶) → (𝑣 = (𝑥 ·Q 𝑦) → (𝑢 = (𝑓 ·Q 𝑧) → ((𝐴P𝐵P𝐶P) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (𝐴 ·P (𝐵 +P 𝐶))))))))
2726com23 86 . . . . . . . . . 10 ((𝑥𝐴𝑦𝐵) → (𝑣 = (𝑥 ·Q 𝑦) → ((𝑓𝐴𝑧𝐶) → (𝑢 = (𝑓 ·Q 𝑧) → ((𝐴P𝐵P𝐶P) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (𝐴 ·P (𝐵 +P 𝐶))))))))
2827rexlimivv 3065 . . . . . . . . 9 (∃𝑥𝐴𝑦𝐵 𝑣 = (𝑥 ·Q 𝑦) → ((𝑓𝐴𝑧𝐶) → (𝑢 = (𝑓 ·Q 𝑧) → ((𝐴P𝐵P𝐶P) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (𝐴 ·P (𝐵 +P 𝐶)))))))
2928rexlimdvv 3066 . . . . . . . 8 (∃𝑥𝐴𝑦𝐵 𝑣 = (𝑥 ·Q 𝑦) → (∃𝑓𝐴𝑧𝐶 𝑢 = (𝑓 ·Q 𝑧) → ((𝐴P𝐵P𝐶P) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (𝐴 ·P (𝐵 +P 𝐶))))))
3029com3r 87 . . . . . . 7 ((𝐴P𝐵P𝐶P) → (∃𝑥𝐴𝑦𝐵 𝑣 = (𝑥 ·Q 𝑦) → (∃𝑓𝐴𝑧𝐶 𝑢 = (𝑓 ·Q 𝑧) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (𝐴 ·P (𝐵 +P 𝐶))))))
3116, 30sylbid 230 . . . . . 6 ((𝐴P𝐵P𝐶P) → (𝑣 ∈ (𝐴 ·P 𝐵) → (∃𝑓𝐴𝑧𝐶 𝑢 = (𝑓 ·Q 𝑧) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (𝐴 ·P (𝐵 +P 𝐶))))))
3231impd 446 . . . . 5 ((𝐴P𝐵P𝐶P) → ((𝑣 ∈ (𝐴 ·P 𝐵) ∧ ∃𝑓𝐴𝑧𝐶 𝑢 = (𝑓 ·Q 𝑧)) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (𝐴 ·P (𝐵 +P 𝐶)))))
3313, 32sylbid 230 . . . 4 ((𝐴P𝐵P𝐶P) → ((𝑣 ∈ (𝐴 ·P 𝐵) ∧ 𝑢 ∈ (𝐴 ·P 𝐶)) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (𝐴 ·P (𝐵 +P 𝐶)))))
3433rexlimdvv 3066 . . 3 ((𝐴P𝐵P𝐶P) → (∃𝑣 ∈ (𝐴 ·P 𝐵)∃𝑢 ∈ (𝐴 ·P 𝐶)𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (𝐴 ·P (𝐵 +P 𝐶))))
358, 34sylbid 230 . 2 ((𝐴P𝐵P𝐶P) → (𝑤 ∈ ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)) → 𝑤 ∈ (𝐴 ·P (𝐵 +P 𝐶))))
3635ssrdv 3642 1 ((𝐴P𝐵P𝐶P) → ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)) ⊆ (𝐴 ·P (𝐵 +P 𝐶)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   ∧ w3a 1054   = wceq 1523   ∈ wcel 2030  ∃wrex 2942   ⊆ wss 3607  (class class class)co 6690   +Q cplq 9715   ·Q cmq 9716  Pcnp 9719   +P cpp 9721   ·P cmp 9722 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-omul 7610  df-er 7787  df-ni 9732  df-pli 9733  df-mi 9734  df-lti 9735  df-plpq 9768  df-mpq 9769  df-ltpq 9770  df-enq 9771  df-nq 9772  df-erq 9773  df-plq 9774  df-mq 9775  df-1nq 9776  df-rq 9777  df-ltnq 9778  df-np 9841  df-plp 9843  df-mp 9844 This theorem is referenced by:  distrpr  9888
 Copyright terms: Public domain W3C validator