MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  distrpr Structured version   Visualization version   GIF version

Theorem distrpr 9810
Description: Multiplication of positive reals is distributive. Proposition 9-3.7(iii) of [Gleason] p. 124. (Contributed by NM, 2-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
distrpr (𝐴 ·P (𝐵 +P 𝐶)) = ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))

Proof of Theorem distrpr
StepHypRef Expression
1 distrlem1pr 9807 . . 3 ((𝐴P𝐵P𝐶P) → (𝐴 ·P (𝐵 +P 𝐶)) ⊆ ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)))
2 distrlem5pr 9809 . . 3 ((𝐴P𝐵P𝐶P) → ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)) ⊆ (𝐴 ·P (𝐵 +P 𝐶)))
31, 2eqssd 3605 . 2 ((𝐴P𝐵P𝐶P) → (𝐴 ·P (𝐵 +P 𝐶)) = ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)))
4 dmplp 9794 . . 3 dom +P = (P × P)
5 0npr 9774 . . 3 ¬ ∅ ∈ P
6 dmmp 9795 . . 3 dom ·P = (P × P)
74, 5, 6ndmovdistr 6788 . 2 (¬ (𝐴P𝐵P𝐶P) → (𝐴 ·P (𝐵 +P 𝐶)) = ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)))
83, 7pm2.61i 176 1 (𝐴 ·P (𝐵 +P 𝐶)) = ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))
Colors of variables: wff setvar class
Syntax hints:  w3a 1036   = wceq 1480  wcel 1987  (class class class)co 6615  Pcnp 9641   +P cpp 9643   ·P cmp 9644
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-inf2 8498
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-1st 7128  df-2nd 7129  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-1o 7520  df-oadd 7524  df-omul 7525  df-er 7702  df-ni 9654  df-pli 9655  df-mi 9656  df-lti 9657  df-plpq 9690  df-mpq 9691  df-ltpq 9692  df-enq 9693  df-nq 9694  df-erq 9695  df-plq 9696  df-mq 9697  df-1nq 9698  df-rq 9699  df-ltnq 9700  df-np 9763  df-plp 9765  df-mp 9766
This theorem is referenced by:  mulcmpblnrlem  9851  mulasssr  9871  distrsr  9872  m1m1sr  9874  1idsr  9879  recexsrlem  9884  mulgt0sr  9886
  Copyright terms: Public domain W3C validator