MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ditgcl Structured version   Visualization version   GIF version

Theorem ditgcl 23545
Description: Closure of a directed integral. (Contributed by Mario Carneiro, 13-Aug-2014.)
Hypotheses
Ref Expression
ditgcl.x (𝜑𝑋 ∈ ℝ)
ditgcl.y (𝜑𝑌 ∈ ℝ)
ditgcl.a (𝜑𝐴 ∈ (𝑋[,]𝑌))
ditgcl.b (𝜑𝐵 ∈ (𝑋[,]𝑌))
ditgcl.c ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → 𝐶𝑉)
ditgcl.i (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐶) ∈ 𝐿1)
Assertion
Ref Expression
ditgcl (𝜑 → ⨜[𝐴𝐵]𝐶 d𝑥 ∈ ℂ)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥   𝑥,𝑉   𝑥,𝑋   𝑥,𝑌
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem ditgcl
StepHypRef Expression
1 ditgcl.a . . . 4 (𝜑𝐴 ∈ (𝑋[,]𝑌))
2 ditgcl.x . . . . 5 (𝜑𝑋 ∈ ℝ)
3 ditgcl.y . . . . 5 (𝜑𝑌 ∈ ℝ)
4 elicc2 12188 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝐴 ∈ (𝑋[,]𝑌) ↔ (𝐴 ∈ ℝ ∧ 𝑋𝐴𝐴𝑌)))
52, 3, 4syl2anc 692 . . . 4 (𝜑 → (𝐴 ∈ (𝑋[,]𝑌) ↔ (𝐴 ∈ ℝ ∧ 𝑋𝐴𝐴𝑌)))
61, 5mpbid 222 . . 3 (𝜑 → (𝐴 ∈ ℝ ∧ 𝑋𝐴𝐴𝑌))
76simp1d 1071 . 2 (𝜑𝐴 ∈ ℝ)
8 ditgcl.b . . . 4 (𝜑𝐵 ∈ (𝑋[,]𝑌))
9 elicc2 12188 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝐵 ∈ (𝑋[,]𝑌) ↔ (𝐵 ∈ ℝ ∧ 𝑋𝐵𝐵𝑌)))
102, 3, 9syl2anc 692 . . . 4 (𝜑 → (𝐵 ∈ (𝑋[,]𝑌) ↔ (𝐵 ∈ ℝ ∧ 𝑋𝐵𝐵𝑌)))
118, 10mpbid 222 . . 3 (𝜑 → (𝐵 ∈ ℝ ∧ 𝑋𝐵𝐵𝑌))
1211simp1d 1071 . 2 (𝜑𝐵 ∈ ℝ)
13 simpr 477 . . . 4 ((𝜑𝐴𝐵) → 𝐴𝐵)
1413ditgpos 23543 . . 3 ((𝜑𝐴𝐵) → ⨜[𝐴𝐵]𝐶 d𝑥 = ∫(𝐴(,)𝐵)𝐶 d𝑥)
152rexrd 10041 . . . . . . . . 9 (𝜑𝑋 ∈ ℝ*)
166simp2d 1072 . . . . . . . . 9 (𝜑𝑋𝐴)
17 iooss1 12160 . . . . . . . . 9 ((𝑋 ∈ ℝ*𝑋𝐴) → (𝐴(,)𝐵) ⊆ (𝑋(,)𝐵))
1815, 16, 17syl2anc 692 . . . . . . . 8 (𝜑 → (𝐴(,)𝐵) ⊆ (𝑋(,)𝐵))
193rexrd 10041 . . . . . . . . 9 (𝜑𝑌 ∈ ℝ*)
2011simp3d 1073 . . . . . . . . 9 (𝜑𝐵𝑌)
21 iooss2 12161 . . . . . . . . 9 ((𝑌 ∈ ℝ*𝐵𝑌) → (𝑋(,)𝐵) ⊆ (𝑋(,)𝑌))
2219, 20, 21syl2anc 692 . . . . . . . 8 (𝜑 → (𝑋(,)𝐵) ⊆ (𝑋(,)𝑌))
2318, 22sstrd 3597 . . . . . . 7 (𝜑 → (𝐴(,)𝐵) ⊆ (𝑋(,)𝑌))
2423sselda 3587 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ (𝑋(,)𝑌))
25 ditgcl.c . . . . . 6 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → 𝐶𝑉)
2624, 25syldan 487 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝐶𝑉)
27 ioombl 23256 . . . . . . 7 (𝐴(,)𝐵) ∈ dom vol
2827a1i 11 . . . . . 6 (𝜑 → (𝐴(,)𝐵) ∈ dom vol)
29 ditgcl.i . . . . . 6 (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐶) ∈ 𝐿1)
3023, 28, 25, 29iblss 23494 . . . . 5 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐶) ∈ 𝐿1)
3126, 30itgcl 23473 . . . 4 (𝜑 → ∫(𝐴(,)𝐵)𝐶 d𝑥 ∈ ℂ)
3231adantr 481 . . 3 ((𝜑𝐴𝐵) → ∫(𝐴(,)𝐵)𝐶 d𝑥 ∈ ℂ)
3314, 32eqeltrd 2698 . 2 ((𝜑𝐴𝐵) → ⨜[𝐴𝐵]𝐶 d𝑥 ∈ ℂ)
34 simpr 477 . . . 4 ((𝜑𝐵𝐴) → 𝐵𝐴)
3512adantr 481 . . . 4 ((𝜑𝐵𝐴) → 𝐵 ∈ ℝ)
367adantr 481 . . . 4 ((𝜑𝐵𝐴) → 𝐴 ∈ ℝ)
3734, 35, 36ditgneg 23544 . . 3 ((𝜑𝐵𝐴) → ⨜[𝐴𝐵]𝐶 d𝑥 = -∫(𝐵(,)𝐴)𝐶 d𝑥)
3811simp2d 1072 . . . . . . . . . 10 (𝜑𝑋𝐵)
39 iooss1 12160 . . . . . . . . . 10 ((𝑋 ∈ ℝ*𝑋𝐵) → (𝐵(,)𝐴) ⊆ (𝑋(,)𝐴))
4015, 38, 39syl2anc 692 . . . . . . . . 9 (𝜑 → (𝐵(,)𝐴) ⊆ (𝑋(,)𝐴))
416simp3d 1073 . . . . . . . . . 10 (𝜑𝐴𝑌)
42 iooss2 12161 . . . . . . . . . 10 ((𝑌 ∈ ℝ*𝐴𝑌) → (𝑋(,)𝐴) ⊆ (𝑋(,)𝑌))
4319, 41, 42syl2anc 692 . . . . . . . . 9 (𝜑 → (𝑋(,)𝐴) ⊆ (𝑋(,)𝑌))
4440, 43sstrd 3597 . . . . . . . 8 (𝜑 → (𝐵(,)𝐴) ⊆ (𝑋(,)𝑌))
4544sselda 3587 . . . . . . 7 ((𝜑𝑥 ∈ (𝐵(,)𝐴)) → 𝑥 ∈ (𝑋(,)𝑌))
4645, 25syldan 487 . . . . . 6 ((𝜑𝑥 ∈ (𝐵(,)𝐴)) → 𝐶𝑉)
47 ioombl 23256 . . . . . . . 8 (𝐵(,)𝐴) ∈ dom vol
4847a1i 11 . . . . . . 7 (𝜑 → (𝐵(,)𝐴) ∈ dom vol)
4944, 48, 25, 29iblss 23494 . . . . . 6 (𝜑 → (𝑥 ∈ (𝐵(,)𝐴) ↦ 𝐶) ∈ 𝐿1)
5046, 49itgcl 23473 . . . . 5 (𝜑 → ∫(𝐵(,)𝐴)𝐶 d𝑥 ∈ ℂ)
5150negcld 10331 . . . 4 (𝜑 → -∫(𝐵(,)𝐴)𝐶 d𝑥 ∈ ℂ)
5251adantr 481 . . 3 ((𝜑𝐵𝐴) → -∫(𝐵(,)𝐴)𝐶 d𝑥 ∈ ℂ)
5337, 52eqeltrd 2698 . 2 ((𝜑𝐵𝐴) → ⨜[𝐴𝐵]𝐶 d𝑥 ∈ ℂ)
547, 12, 33, 53lecasei 10095 1 (𝜑 → ⨜[𝐴𝐵]𝐶 d𝑥 ∈ ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036  wcel 1987  wss 3559   class class class wbr 4618  cmpt 4678  dom cdm 5079  (class class class)co 6610  cc 9886  cr 9887  *cxr 10025  cle 10027  -cneg 10219  (,)cioo 12125  [,]cicc 12128  volcvol 23155  𝐿1cibl 23309  citg 23310  cdit 23533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-inf2 8490  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965  ax-pre-sup 9966  ax-addf 9967
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-disj 4589  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-isom 5861  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-of 6857  df-ofr 6858  df-om 7020  df-1st 7120  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-2o 7513  df-oadd 7516  df-er 7694  df-map 7811  df-pm 7812  df-en 7908  df-dom 7909  df-sdom 7910  df-fin 7911  df-sup 8300  df-inf 8301  df-oi 8367  df-card 8717  df-cda 8942  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-div 10637  df-nn 10973  df-2 11031  df-3 11032  df-4 11033  df-n0 11245  df-z 11330  df-uz 11640  df-q 11741  df-rp 11785  df-xadd 11899  df-ioo 12129  df-ico 12131  df-icc 12132  df-fz 12277  df-fzo 12415  df-fl 12541  df-mod 12617  df-seq 12750  df-exp 12809  df-hash 13066  df-cj 13781  df-re 13782  df-im 13783  df-sqrt 13917  df-abs 13918  df-clim 14161  df-rlim 14162  df-sum 14359  df-xmet 19671  df-met 19672  df-ovol 23156  df-vol 23157  df-mbf 23311  df-itg1 23312  df-itg2 23313  df-ibl 23314  df-itg 23315  df-0p 23360  df-ditg 23534
This theorem is referenced by:  ditgsplit  23548  itgsubstlem  23732
  Copyright terms: Public domain W3C validator