MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ditgeq3 Structured version   Visualization version   GIF version

Theorem ditgeq3 23337
Description: Equality theorem for the directed integral. (The domain of the equality here is very rough; for more precise bounds one should decompose it with ditgpos 23343 first and use the equality theorems for df-itg 23115.) (Contributed by Mario Carneiro, 13-Aug-2014.)
Assertion
Ref Expression
ditgeq3 (∀𝑥 ∈ ℝ 𝐷 = 𝐸 → ⨜[𝐴𝐵]𝐷 d𝑥 = ⨜[𝐴𝐵]𝐸 d𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝐷(𝑥)   𝐸(𝑥)

Proof of Theorem ditgeq3
StepHypRef Expression
1 ioossre 12062 . . . . 5 (𝐴(,)𝐵) ⊆ ℝ
2 ssralv 3628 . . . . 5 ((𝐴(,)𝐵) ⊆ ℝ → (∀𝑥 ∈ ℝ 𝐷 = 𝐸 → ∀𝑥 ∈ (𝐴(,)𝐵)𝐷 = 𝐸))
31, 2ax-mp 5 . . . 4 (∀𝑥 ∈ ℝ 𝐷 = 𝐸 → ∀𝑥 ∈ (𝐴(,)𝐵)𝐷 = 𝐸)
4 itgeq2 23267 . . . 4 (∀𝑥 ∈ (𝐴(,)𝐵)𝐷 = 𝐸 → ∫(𝐴(,)𝐵)𝐷 d𝑥 = ∫(𝐴(,)𝐵)𝐸 d𝑥)
53, 4syl 17 . . 3 (∀𝑥 ∈ ℝ 𝐷 = 𝐸 → ∫(𝐴(,)𝐵)𝐷 d𝑥 = ∫(𝐴(,)𝐵)𝐸 d𝑥)
6 ioossre 12062 . . . . . 6 (𝐵(,)𝐴) ⊆ ℝ
7 ssralv 3628 . . . . . 6 ((𝐵(,)𝐴) ⊆ ℝ → (∀𝑥 ∈ ℝ 𝐷 = 𝐸 → ∀𝑥 ∈ (𝐵(,)𝐴)𝐷 = 𝐸))
86, 7ax-mp 5 . . . . 5 (∀𝑥 ∈ ℝ 𝐷 = 𝐸 → ∀𝑥 ∈ (𝐵(,)𝐴)𝐷 = 𝐸)
9 itgeq2 23267 . . . . 5 (∀𝑥 ∈ (𝐵(,)𝐴)𝐷 = 𝐸 → ∫(𝐵(,)𝐴)𝐷 d𝑥 = ∫(𝐵(,)𝐴)𝐸 d𝑥)
108, 9syl 17 . . . 4 (∀𝑥 ∈ ℝ 𝐷 = 𝐸 → ∫(𝐵(,)𝐴)𝐷 d𝑥 = ∫(𝐵(,)𝐴)𝐸 d𝑥)
1110negeqd 10126 . . 3 (∀𝑥 ∈ ℝ 𝐷 = 𝐸 → -∫(𝐵(,)𝐴)𝐷 d𝑥 = -∫(𝐵(,)𝐴)𝐸 d𝑥)
125, 11ifeq12d 4055 . 2 (∀𝑥 ∈ ℝ 𝐷 = 𝐸 → if(𝐴𝐵, ∫(𝐴(,)𝐵)𝐷 d𝑥, -∫(𝐵(,)𝐴)𝐷 d𝑥) = if(𝐴𝐵, ∫(𝐴(,)𝐵)𝐸 d𝑥, -∫(𝐵(,)𝐴)𝐸 d𝑥))
13 df-ditg 23334 . 2 ⨜[𝐴𝐵]𝐷 d𝑥 = if(𝐴𝐵, ∫(𝐴(,)𝐵)𝐷 d𝑥, -∫(𝐵(,)𝐴)𝐷 d𝑥)
14 df-ditg 23334 . 2 ⨜[𝐴𝐵]𝐸 d𝑥 = if(𝐴𝐵, ∫(𝐴(,)𝐵)𝐸 d𝑥, -∫(𝐵(,)𝐴)𝐸 d𝑥)
1512, 13, 143eqtr4g 2668 1 (∀𝑥 ∈ ℝ 𝐷 = 𝐸 → ⨜[𝐴𝐵]𝐷 d𝑥 = ⨜[𝐴𝐵]𝐸 d𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1474  wral 2895  wss 3539  ifcif 4035   class class class wbr 4577  (class class class)co 6527  cr 9791  cle 9931  -cneg 10118  (,)cioo 12002  citg 23110  cdit 23333
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2232  ax-ext 2589  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6935  df-1st 7036  df-2nd 7037  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-er 7606  df-en 7819  df-dom 7820  df-sdom 7821  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-nn 10868  df-n0 11140  df-z 11211  df-uz 11520  df-ioo 12006  df-fz 12153  df-seq 12619  df-sum 14211  df-itg 23115  df-ditg 23334
This theorem is referenced by:  ditgeq3dv  23338
  Copyright terms: Public domain W3C validator