Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  divalgb Structured version   Visualization version   GIF version

Theorem divalgb 15329
 Description: Express the division algorithm as stated in divalg 15328 in terms of ∥. (Contributed by Paul Chapman, 31-Mar-2011.)
Assertion
Ref Expression
divalgb ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) → (∃!𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ↔ ∃!𝑟 ∈ ℕ0 (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁𝑟))))
Distinct variable groups:   𝐷,𝑞,𝑟   𝑁,𝑞,𝑟

Proof of Theorem divalgb
StepHypRef Expression
1 zsubcl 11611 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑟 ∈ ℤ) → (𝑁𝑟) ∈ ℤ)
2 divides 15184 . . . . . . . . . . . 12 ((𝐷 ∈ ℤ ∧ (𝑁𝑟) ∈ ℤ) → (𝐷 ∥ (𝑁𝑟) ↔ ∃𝑞 ∈ ℤ (𝑞 · 𝐷) = (𝑁𝑟)))
31, 2sylan2 492 . . . . . . . . . . 11 ((𝐷 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ 𝑟 ∈ ℤ)) → (𝐷 ∥ (𝑁𝑟) ↔ ∃𝑞 ∈ ℤ (𝑞 · 𝐷) = (𝑁𝑟)))
433impb 1108 . . . . . . . . . 10 ((𝐷 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑟 ∈ ℤ) → (𝐷 ∥ (𝑁𝑟) ↔ ∃𝑞 ∈ ℤ (𝑞 · 𝐷) = (𝑁𝑟)))
543com12 1118 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝑟 ∈ ℤ) → (𝐷 ∥ (𝑁𝑟) ↔ ∃𝑞 ∈ ℤ (𝑞 · 𝐷) = (𝑁𝑟)))
6 zcn 11574 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
7 zcn 11574 . . . . . . . . . . . . . . . . . 18 (𝑟 ∈ ℤ → 𝑟 ∈ ℂ)
8 zmulcl 11618 . . . . . . . . . . . . . . . . . . 19 ((𝑞 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (𝑞 · 𝐷) ∈ ℤ)
98zcnd 11675 . . . . . . . . . . . . . . . . . 18 ((𝑞 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (𝑞 · 𝐷) ∈ ℂ)
10 subadd 10476 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℂ ∧ 𝑟 ∈ ℂ ∧ (𝑞 · 𝐷) ∈ ℂ) → ((𝑁𝑟) = (𝑞 · 𝐷) ↔ (𝑟 + (𝑞 · 𝐷)) = 𝑁))
116, 7, 9, 10syl3an 1164 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ (𝑞 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ((𝑁𝑟) = (𝑞 · 𝐷) ↔ (𝑟 + (𝑞 · 𝐷)) = 𝑁))
12 addcom 10414 . . . . . . . . . . . . . . . . . . . 20 ((𝑟 ∈ ℂ ∧ (𝑞 · 𝐷) ∈ ℂ) → (𝑟 + (𝑞 · 𝐷)) = ((𝑞 · 𝐷) + 𝑟))
137, 9, 12syl2an 495 . . . . . . . . . . . . . . . . . . 19 ((𝑟 ∈ ℤ ∧ (𝑞 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (𝑟 + (𝑞 · 𝐷)) = ((𝑞 · 𝐷) + 𝑟))
14133adant1 1125 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ (𝑞 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (𝑟 + (𝑞 · 𝐷)) = ((𝑞 · 𝐷) + 𝑟))
1514eqeq1d 2762 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ (𝑞 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ((𝑟 + (𝑞 · 𝐷)) = 𝑁 ↔ ((𝑞 · 𝐷) + 𝑟) = 𝑁))
1611, 15bitrd 268 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ (𝑞 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ((𝑁𝑟) = (𝑞 · 𝐷) ↔ ((𝑞 · 𝐷) + 𝑟) = 𝑁))
17 eqcom 2767 . . . . . . . . . . . . . . . 16 ((𝑁𝑟) = (𝑞 · 𝐷) ↔ (𝑞 · 𝐷) = (𝑁𝑟))
18 eqcom 2767 . . . . . . . . . . . . . . . 16 (((𝑞 · 𝐷) + 𝑟) = 𝑁𝑁 = ((𝑞 · 𝐷) + 𝑟))
1916, 17, 183bitr3g 302 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ (𝑞 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ((𝑞 · 𝐷) = (𝑁𝑟) ↔ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
20193expia 1115 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝑟 ∈ ℤ) → ((𝑞 ∈ ℤ ∧ 𝐷 ∈ ℤ) → ((𝑞 · 𝐷) = (𝑁𝑟) ↔ 𝑁 = ((𝑞 · 𝐷) + 𝑟))))
2120expcomd 453 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝑟 ∈ ℤ) → (𝐷 ∈ ℤ → (𝑞 ∈ ℤ → ((𝑞 · 𝐷) = (𝑁𝑟) ↔ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))))
22213impia 1110 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (𝑞 ∈ ℤ → ((𝑞 · 𝐷) = (𝑁𝑟) ↔ 𝑁 = ((𝑞 · 𝐷) + 𝑟))))
2322imp 444 . . . . . . . . . . 11 (((𝑁 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ 𝑞 ∈ ℤ) → ((𝑞 · 𝐷) = (𝑁𝑟) ↔ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
2423rexbidva 3187 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (∃𝑞 ∈ ℤ (𝑞 · 𝐷) = (𝑁𝑟) ↔ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
25243com23 1121 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝑟 ∈ ℤ) → (∃𝑞 ∈ ℤ (𝑞 · 𝐷) = (𝑁𝑟) ↔ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
265, 25bitrd 268 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝑟 ∈ ℤ) → (𝐷 ∥ (𝑁𝑟) ↔ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
2726anbi2d 742 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝑟 ∈ ℤ) → (((0 ≤ 𝑟𝑟 < (abs‘𝐷)) ∧ 𝐷 ∥ (𝑁𝑟)) ↔ ((0 ≤ 𝑟𝑟 < (abs‘𝐷)) ∧ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑟))))
28 df-3an 1074 . . . . . . . . 9 ((0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ↔ ((0 ≤ 𝑟𝑟 < (abs‘𝐷)) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
2928rexbii 3179 . . . . . . . 8 (∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ↔ ∃𝑞 ∈ ℤ ((0 ≤ 𝑟𝑟 < (abs‘𝐷)) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
30 r19.42v 3230 . . . . . . . 8 (∃𝑞 ∈ ℤ ((0 ≤ 𝑟𝑟 < (abs‘𝐷)) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ↔ ((0 ≤ 𝑟𝑟 < (abs‘𝐷)) ∧ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
3129, 30bitri 264 . . . . . . 7 (∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ↔ ((0 ≤ 𝑟𝑟 < (abs‘𝐷)) ∧ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
3227, 31syl6rbbr 279 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝑟 ∈ ℤ) → (∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ↔ ((0 ≤ 𝑟𝑟 < (abs‘𝐷)) ∧ 𝐷 ∥ (𝑁𝑟))))
33 anass 684 . . . . . 6 (((0 ≤ 𝑟𝑟 < (abs‘𝐷)) ∧ 𝐷 ∥ (𝑁𝑟)) ↔ (0 ≤ 𝑟 ∧ (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁𝑟))))
3432, 33syl6bb 276 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝑟 ∈ ℤ) → (∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ↔ (0 ≤ 𝑟 ∧ (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁𝑟)))))
35343expa 1112 . . . 4 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ 𝑟 ∈ ℤ) → (∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ↔ (0 ≤ 𝑟 ∧ (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁𝑟)))))
3635reubidva 3264 . . 3 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (∃!𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ↔ ∃!𝑟 ∈ ℤ (0 ≤ 𝑟 ∧ (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁𝑟)))))
37 elnn0z 11582 . . . . . . 7 (𝑟 ∈ ℕ0 ↔ (𝑟 ∈ ℤ ∧ 0 ≤ 𝑟))
3837anbi1i 733 . . . . . 6 ((𝑟 ∈ ℕ0 ∧ (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁𝑟))) ↔ ((𝑟 ∈ ℤ ∧ 0 ≤ 𝑟) ∧ (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁𝑟))))
39 anass 684 . . . . . 6 (((𝑟 ∈ ℤ ∧ 0 ≤ 𝑟) ∧ (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁𝑟))) ↔ (𝑟 ∈ ℤ ∧ (0 ≤ 𝑟 ∧ (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁𝑟)))))
4038, 39bitri 264 . . . . 5 ((𝑟 ∈ ℕ0 ∧ (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁𝑟))) ↔ (𝑟 ∈ ℤ ∧ (0 ≤ 𝑟 ∧ (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁𝑟)))))
4140eubii 2629 . . . 4 (∃!𝑟(𝑟 ∈ ℕ0 ∧ (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁𝑟))) ↔ ∃!𝑟(𝑟 ∈ ℤ ∧ (0 ≤ 𝑟 ∧ (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁𝑟)))))
42 df-reu 3057 . . . 4 (∃!𝑟 ∈ ℕ0 (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁𝑟)) ↔ ∃!𝑟(𝑟 ∈ ℕ0 ∧ (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁𝑟))))
43 df-reu 3057 . . . 4 (∃!𝑟 ∈ ℤ (0 ≤ 𝑟 ∧ (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁𝑟))) ↔ ∃!𝑟(𝑟 ∈ ℤ ∧ (0 ≤ 𝑟 ∧ (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁𝑟)))))
4441, 42, 433bitr4ri 293 . . 3 (∃!𝑟 ∈ ℤ (0 ≤ 𝑟 ∧ (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁𝑟))) ↔ ∃!𝑟 ∈ ℕ0 (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁𝑟)))
4536, 44syl6bb 276 . 2 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (∃!𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ↔ ∃!𝑟 ∈ ℕ0 (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁𝑟))))
46453adant3 1127 1 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) → (∃!𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ↔ ∃!𝑟 ∈ ℕ0 (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁𝑟))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   ∧ w3a 1072   = wceq 1632   ∈ wcel 2139  ∃!weu 2607   ≠ wne 2932  ∃wrex 3051  ∃!wreu 3052   class class class wbr 4804  ‘cfv 6049  (class class class)co 6813  ℂcc 10126  0cc0 10128   + caddc 10131   · cmul 10133   < clt 10266   ≤ cle 10267   − cmin 10458  ℕ0cn0 11484  ℤcz 11569  abscabs 14173   ∥ cdvds 15182 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-nn 11213  df-n0 11485  df-z 11570  df-dvds 15183 This theorem is referenced by:  divalg2  15330
 Copyright terms: Public domain W3C validator