MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divalglem0 Structured version   Visualization version   GIF version

Theorem divalglem0 14821
Description: Lemma for divalg 14834. (Contributed by Paul Chapman, 21-Mar-2011.)
Hypotheses
Ref Expression
divalglem0.1 𝑁 ∈ ℤ
divalglem0.2 𝐷 ∈ ℤ
Assertion
Ref Expression
divalglem0 ((𝑅 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐷 ∥ (𝑁𝑅) → 𝐷 ∥ (𝑁 − (𝑅 − (𝐾 · (abs‘𝐷))))))

Proof of Theorem divalglem0
StepHypRef Expression
1 divalglem0.2 . . . . . 6 𝐷 ∈ ℤ
2 iddvds 14700 . . . . . . 7 (𝐷 ∈ ℤ → 𝐷𝐷)
3 dvdsabsb 14706 . . . . . . . 8 ((𝐷 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (𝐷𝐷𝐷 ∥ (abs‘𝐷)))
43anidms 674 . . . . . . 7 (𝐷 ∈ ℤ → (𝐷𝐷𝐷 ∥ (abs‘𝐷)))
52, 4mpbid 220 . . . . . 6 (𝐷 ∈ ℤ → 𝐷 ∥ (abs‘𝐷))
61, 5ax-mp 5 . . . . 5 𝐷 ∥ (abs‘𝐷)
7 nn0abscl 13757 . . . . . . . 8 (𝐷 ∈ ℤ → (abs‘𝐷) ∈ ℕ0)
81, 7ax-mp 5 . . . . . . 7 (abs‘𝐷) ∈ ℕ0
98nn0zi 11142 . . . . . 6 (abs‘𝐷) ∈ ℤ
10 dvdsmultr2 14726 . . . . . 6 ((𝐷 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ (abs‘𝐷) ∈ ℤ) → (𝐷 ∥ (abs‘𝐷) → 𝐷 ∥ (𝐾 · (abs‘𝐷))))
111, 9, 10mp3an13 1406 . . . . 5 (𝐾 ∈ ℤ → (𝐷 ∥ (abs‘𝐷) → 𝐷 ∥ (𝐾 · (abs‘𝐷))))
126, 11mpi 20 . . . 4 (𝐾 ∈ ℤ → 𝐷 ∥ (𝐾 · (abs‘𝐷)))
1312adantl 480 . . 3 ((𝑅 ∈ ℤ ∧ 𝐾 ∈ ℤ) → 𝐷 ∥ (𝐾 · (abs‘𝐷)))
14 divalglem0.1 . . . . 5 𝑁 ∈ ℤ
15 zsubcl 11159 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑅 ∈ ℤ) → (𝑁𝑅) ∈ ℤ)
1614, 15mpan 701 . . . 4 (𝑅 ∈ ℤ → (𝑁𝑅) ∈ ℤ)
17 zmulcl 11166 . . . . 5 ((𝐾 ∈ ℤ ∧ (abs‘𝐷) ∈ ℤ) → (𝐾 · (abs‘𝐷)) ∈ ℤ)
189, 17mpan2 702 . . . 4 (𝐾 ∈ ℤ → (𝐾 · (abs‘𝐷)) ∈ ℤ)
19 dvds2add 14720 . . . . 5 ((𝐷 ∈ ℤ ∧ (𝑁𝑅) ∈ ℤ ∧ (𝐾 · (abs‘𝐷)) ∈ ℤ) → ((𝐷 ∥ (𝑁𝑅) ∧ 𝐷 ∥ (𝐾 · (abs‘𝐷))) → 𝐷 ∥ ((𝑁𝑅) + (𝐾 · (abs‘𝐷)))))
201, 19mp3an1 1402 . . . 4 (((𝑁𝑅) ∈ ℤ ∧ (𝐾 · (abs‘𝐷)) ∈ ℤ) → ((𝐷 ∥ (𝑁𝑅) ∧ 𝐷 ∥ (𝐾 · (abs‘𝐷))) → 𝐷 ∥ ((𝑁𝑅) + (𝐾 · (abs‘𝐷)))))
2116, 18, 20syl2an 492 . . 3 ((𝑅 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝐷 ∥ (𝑁𝑅) ∧ 𝐷 ∥ (𝐾 · (abs‘𝐷))) → 𝐷 ∥ ((𝑁𝑅) + (𝐾 · (abs‘𝐷)))))
2213, 21mpan2d 705 . 2 ((𝑅 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐷 ∥ (𝑁𝑅) → 𝐷 ∥ ((𝑁𝑅) + (𝐾 · (abs‘𝐷)))))
23 zcn 11122 . . . 4 (𝑅 ∈ ℤ → 𝑅 ∈ ℂ)
2418zcnd 11222 . . . 4 (𝐾 ∈ ℤ → (𝐾 · (abs‘𝐷)) ∈ ℂ)
25 zcn 11122 . . . . . 6 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
2614, 25ax-mp 5 . . . . 5 𝑁 ∈ ℂ
27 subsub 10061 . . . . 5 ((𝑁 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (𝐾 · (abs‘𝐷)) ∈ ℂ) → (𝑁 − (𝑅 − (𝐾 · (abs‘𝐷)))) = ((𝑁𝑅) + (𝐾 · (abs‘𝐷))))
2826, 27mp3an1 1402 . . . 4 ((𝑅 ∈ ℂ ∧ (𝐾 · (abs‘𝐷)) ∈ ℂ) → (𝑁 − (𝑅 − (𝐾 · (abs‘𝐷)))) = ((𝑁𝑅) + (𝐾 · (abs‘𝐷))))
2923, 24, 28syl2an 492 . . 3 ((𝑅 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁 − (𝑅 − (𝐾 · (abs‘𝐷)))) = ((𝑁𝑅) + (𝐾 · (abs‘𝐷))))
3029breq2d 4493 . 2 ((𝑅 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐷 ∥ (𝑁 − (𝑅 − (𝐾 · (abs‘𝐷)))) ↔ 𝐷 ∥ ((𝑁𝑅) + (𝐾 · (abs‘𝐷)))))
3122, 30sylibrd 247 1 ((𝑅 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐷 ∥ (𝑁𝑅) → 𝐷 ∥ (𝑁 − (𝑅 − (𝐾 · (abs‘𝐷))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382   = wceq 1474  wcel 1938   class class class wbr 4481  cfv 5689  (class class class)co 6425  cc 9688   + caddc 9693   · cmul 9695  cmin 10016  0cn0 11046  cz 11117  abscabs 13679  cdvds 14688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1700  ax-4 1713  ax-5 1793  ax-6 1838  ax-7 1885  ax-8 1940  ax-9 1947  ax-10 1966  ax-11 1971  ax-12 1983  ax-13 2137  ax-ext 2494  ax-sep 4607  ax-nul 4616  ax-pow 4668  ax-pr 4732  ax-un 6722  ax-cnex 9746  ax-resscn 9747  ax-1cn 9748  ax-icn 9749  ax-addcl 9750  ax-addrcl 9751  ax-mulcl 9752  ax-mulrcl 9753  ax-mulcom 9754  ax-addass 9755  ax-mulass 9756  ax-distr 9757  ax-i2m1 9758  ax-1ne0 9759  ax-1rid 9760  ax-rnegex 9761  ax-rrecex 9762  ax-cnre 9763  ax-pre-lttri 9764  ax-pre-lttrn 9765  ax-pre-ltadd 9766  ax-pre-mulgt0 9767  ax-pre-sup 9768
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1699  df-sb 1831  df-eu 2366  df-mo 2367  df-clab 2501  df-cleq 2507  df-clel 2510  df-nfc 2644  df-ne 2686  df-nel 2687  df-ral 2805  df-rex 2806  df-reu 2807  df-rmo 2808  df-rab 2809  df-v 3079  df-sbc 3307  df-csb 3404  df-dif 3447  df-un 3449  df-in 3451  df-ss 3458  df-pss 3460  df-nul 3778  df-if 3940  df-pw 4013  df-sn 4029  df-pr 4031  df-tp 4033  df-op 4035  df-uni 4271  df-iun 4355  df-br 4482  df-opab 4542  df-mpt 4543  df-tr 4579  df-eprel 4843  df-id 4847  df-po 4853  df-so 4854  df-fr 4891  df-we 4893  df-xp 4938  df-rel 4939  df-cnv 4940  df-co 4941  df-dm 4942  df-rn 4943  df-res 4944  df-ima 4945  df-pred 5487  df-ord 5533  df-on 5534  df-lim 5535  df-suc 5536  df-iota 5653  df-fun 5691  df-fn 5692  df-f 5693  df-f1 5694  df-fo 5695  df-f1o 5696  df-fv 5697  df-riota 6387  df-ov 6428  df-oprab 6429  df-mpt2 6430  df-om 6833  df-2nd 6934  df-wrecs 7168  df-recs 7230  df-rdg 7268  df-er 7504  df-en 7717  df-dom 7718  df-sdom 7719  df-sup 8106  df-pnf 9830  df-mnf 9831  df-xr 9832  df-ltxr 9833  df-le 9834  df-sub 10018  df-neg 10019  df-div 10433  df-nn 10775  df-2 10833  df-3 10834  df-n0 11047  df-z 11118  df-uz 11427  df-rp 11574  df-seq 12531  df-exp 12590  df-cj 13544  df-re 13545  df-im 13546  df-sqrt 13680  df-abs 13681  df-dvds 14689
This theorem is referenced by:  divalglem5OLD  14826  divalglem5  14827
  Copyright terms: Public domain W3C validator