MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divalglem2 Structured version   Visualization version   GIF version

Theorem divalglem2 15037
Description: Lemma for divalg 15045. (Contributed by Paul Chapman, 21-Mar-2011.) (Revised by AV, 2-Oct-2020.)
Hypotheses
Ref Expression
divalglem0.1 𝑁 ∈ ℤ
divalglem0.2 𝐷 ∈ ℤ
divalglem1.3 𝐷 ≠ 0
divalglem2.4 𝑆 = {𝑟 ∈ ℕ0𝐷 ∥ (𝑁𝑟)}
Assertion
Ref Expression
divalglem2 inf(𝑆, ℝ, < ) ∈ 𝑆
Distinct variable groups:   𝐷,𝑟   𝑁,𝑟
Allowed substitution hint:   𝑆(𝑟)

Proof of Theorem divalglem2
StepHypRef Expression
1 divalglem2.4 . . . 4 𝑆 = {𝑟 ∈ ℕ0𝐷 ∥ (𝑁𝑟)}
2 ssrab2 3671 . . . 4 {𝑟 ∈ ℕ0𝐷 ∥ (𝑁𝑟)} ⊆ ℕ0
31, 2eqsstri 3619 . . 3 𝑆 ⊆ ℕ0
4 nn0uz 11666 . . 3 0 = (ℤ‘0)
53, 4sseqtri 3621 . 2 𝑆 ⊆ (ℤ‘0)
6 divalglem0.1 . . . . . 6 𝑁 ∈ ℤ
7 divalglem0.2 . . . . . . . . 9 𝐷 ∈ ℤ
8 zmulcl 11371 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (𝑁 · 𝐷) ∈ ℤ)
96, 7, 8mp2an 707 . . . . . . . 8 (𝑁 · 𝐷) ∈ ℤ
10 nn0abscl 13981 . . . . . . . 8 ((𝑁 · 𝐷) ∈ ℤ → (abs‘(𝑁 · 𝐷)) ∈ ℕ0)
119, 10ax-mp 5 . . . . . . 7 (abs‘(𝑁 · 𝐷)) ∈ ℕ0
1211nn0zi 11347 . . . . . 6 (abs‘(𝑁 · 𝐷)) ∈ ℤ
13 zaddcl 11362 . . . . . 6 ((𝑁 ∈ ℤ ∧ (abs‘(𝑁 · 𝐷)) ∈ ℤ) → (𝑁 + (abs‘(𝑁 · 𝐷))) ∈ ℤ)
146, 12, 13mp2an 707 . . . . 5 (𝑁 + (abs‘(𝑁 · 𝐷))) ∈ ℤ
15 divalglem1.3 . . . . . 6 𝐷 ≠ 0
166, 7, 15divalglem1 15036 . . . . 5 0 ≤ (𝑁 + (abs‘(𝑁 · 𝐷)))
17 elnn0z 11335 . . . . 5 ((𝑁 + (abs‘(𝑁 · 𝐷))) ∈ ℕ0 ↔ ((𝑁 + (abs‘(𝑁 · 𝐷))) ∈ ℤ ∧ 0 ≤ (𝑁 + (abs‘(𝑁 · 𝐷)))))
1814, 16, 17mpbir2an 954 . . . 4 (𝑁 + (abs‘(𝑁 · 𝐷))) ∈ ℕ0
19 iddvds 14914 . . . . . . . 8 (𝐷 ∈ ℤ → 𝐷𝐷)
20 dvdsabsb 14920 . . . . . . . . 9 ((𝐷 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (𝐷𝐷𝐷 ∥ (abs‘𝐷)))
2120anidms 676 . . . . . . . 8 (𝐷 ∈ ℤ → (𝐷𝐷𝐷 ∥ (abs‘𝐷)))
2219, 21mpbid 222 . . . . . . 7 (𝐷 ∈ ℤ → 𝐷 ∥ (abs‘𝐷))
237, 22ax-mp 5 . . . . . 6 𝐷 ∥ (abs‘𝐷)
24 nn0abscl 13981 . . . . . . . . 9 (𝑁 ∈ ℤ → (abs‘𝑁) ∈ ℕ0)
256, 24ax-mp 5 . . . . . . . 8 (abs‘𝑁) ∈ ℕ0
2625nn0negzi 11361 . . . . . . 7 -(abs‘𝑁) ∈ ℤ
27 nn0abscl 13981 . . . . . . . . 9 (𝐷 ∈ ℤ → (abs‘𝐷) ∈ ℕ0)
287, 27ax-mp 5 . . . . . . . 8 (abs‘𝐷) ∈ ℕ0
2928nn0zi 11347 . . . . . . 7 (abs‘𝐷) ∈ ℤ
30 dvdsmultr2 14940 . . . . . . 7 ((𝐷 ∈ ℤ ∧ -(abs‘𝑁) ∈ ℤ ∧ (abs‘𝐷) ∈ ℤ) → (𝐷 ∥ (abs‘𝐷) → 𝐷 ∥ (-(abs‘𝑁) · (abs‘𝐷))))
317, 26, 29, 30mp3an 1421 . . . . . 6 (𝐷 ∥ (abs‘𝐷) → 𝐷 ∥ (-(abs‘𝑁) · (abs‘𝐷)))
3223, 31ax-mp 5 . . . . 5 𝐷 ∥ (-(abs‘𝑁) · (abs‘𝐷))
33 zcn 11327 . . . . . . . . 9 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
346, 33ax-mp 5 . . . . . . . 8 𝑁 ∈ ℂ
35 zcn 11327 . . . . . . . . 9 (𝐷 ∈ ℤ → 𝐷 ∈ ℂ)
367, 35ax-mp 5 . . . . . . . 8 𝐷 ∈ ℂ
3734, 36absmuli 14072 . . . . . . 7 (abs‘(𝑁 · 𝐷)) = ((abs‘𝑁) · (abs‘𝐷))
3837negeqi 10219 . . . . . 6 -(abs‘(𝑁 · 𝐷)) = -((abs‘𝑁) · (abs‘𝐷))
39 df-neg 10214 . . . . . . 7 -(abs‘(𝑁 · 𝐷)) = (0 − (abs‘(𝑁 · 𝐷)))
4034subidi 10297 . . . . . . . 8 (𝑁𝑁) = 0
4140oveq1i 6615 . . . . . . 7 ((𝑁𝑁) − (abs‘(𝑁 · 𝐷))) = (0 − (abs‘(𝑁 · 𝐷)))
4211nn0cni 11249 . . . . . . . 8 (abs‘(𝑁 · 𝐷)) ∈ ℂ
43 subsub4 10259 . . . . . . . 8 ((𝑁 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ (abs‘(𝑁 · 𝐷)) ∈ ℂ) → ((𝑁𝑁) − (abs‘(𝑁 · 𝐷))) = (𝑁 − (𝑁 + (abs‘(𝑁 · 𝐷)))))
4434, 34, 42, 43mp3an 1421 . . . . . . 7 ((𝑁𝑁) − (abs‘(𝑁 · 𝐷))) = (𝑁 − (𝑁 + (abs‘(𝑁 · 𝐷))))
4539, 41, 443eqtr2ri 2655 . . . . . 6 (𝑁 − (𝑁 + (abs‘(𝑁 · 𝐷)))) = -(abs‘(𝑁 · 𝐷))
4634abscli 14063 . . . . . . . 8 (abs‘𝑁) ∈ ℝ
4746recni 9997 . . . . . . 7 (abs‘𝑁) ∈ ℂ
4836abscli 14063 . . . . . . . 8 (abs‘𝐷) ∈ ℝ
4948recni 9997 . . . . . . 7 (abs‘𝐷) ∈ ℂ
5047, 49mulneg1i 10421 . . . . . 6 (-(abs‘𝑁) · (abs‘𝐷)) = -((abs‘𝑁) · (abs‘𝐷))
5138, 45, 503eqtr4i 2658 . . . . 5 (𝑁 − (𝑁 + (abs‘(𝑁 · 𝐷)))) = (-(abs‘𝑁) · (abs‘𝐷))
5232, 51breqtrri 4645 . . . 4 𝐷 ∥ (𝑁 − (𝑁 + (abs‘(𝑁 · 𝐷))))
53 oveq2 6613 . . . . . 6 (𝑟 = (𝑁 + (abs‘(𝑁 · 𝐷))) → (𝑁𝑟) = (𝑁 − (𝑁 + (abs‘(𝑁 · 𝐷)))))
5453breq2d 4630 . . . . 5 (𝑟 = (𝑁 + (abs‘(𝑁 · 𝐷))) → (𝐷 ∥ (𝑁𝑟) ↔ 𝐷 ∥ (𝑁 − (𝑁 + (abs‘(𝑁 · 𝐷))))))
5554, 1elrab2 3353 . . . 4 ((𝑁 + (abs‘(𝑁 · 𝐷))) ∈ 𝑆 ↔ ((𝑁 + (abs‘(𝑁 · 𝐷))) ∈ ℕ0𝐷 ∥ (𝑁 − (𝑁 + (abs‘(𝑁 · 𝐷))))))
5618, 52, 55mpbir2an 954 . . 3 (𝑁 + (abs‘(𝑁 · 𝐷))) ∈ 𝑆
5756ne0ii 3904 . 2 𝑆 ≠ ∅
58 infssuzcl 11716 . 2 ((𝑆 ⊆ (ℤ‘0) ∧ 𝑆 ≠ ∅) → inf(𝑆, ℝ, < ) ∈ 𝑆)
595, 57, 58mp2an 707 1 inf(𝑆, ℝ, < ) ∈ 𝑆
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1480  wcel 1992  wne 2796  {crab 2916  wss 3560  c0 3896   class class class wbr 4618  cfv 5850  (class class class)co 6605  infcinf 8292  cc 9879  cr 9880  0cc0 9881   + caddc 9884   · cmul 9886   < clt 10019  cle 10020  cmin 10211  -cneg 10212  0cn0 11237  cz 11322  cuz 11631  abscabs 13903  cdvds 14902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958  ax-pre-sup 9959
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-om 7014  df-2nd 7117  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-er 7688  df-en 7901  df-dom 7902  df-sdom 7903  df-sup 8293  df-inf 8294  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-div 10630  df-nn 10966  df-2 11024  df-3 11025  df-n0 11238  df-z 11323  df-uz 11632  df-rp 11777  df-seq 12739  df-exp 12798  df-cj 13768  df-re 13769  df-im 13770  df-sqrt 13904  df-abs 13905  df-dvds 14903
This theorem is referenced by:  divalglem5  15039  divalglem9  15043
  Copyright terms: Public domain W3C validator