MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divalglem5 Structured version   Visualization version   GIF version

Theorem divalglem5 15747
Description: Lemma for divalg 15753. (Contributed by Paul Chapman, 21-Mar-2011.) (Revised by AV, 2-Oct-2020.)
Hypotheses
Ref Expression
divalglem0.1 𝑁 ∈ ℤ
divalglem0.2 𝐷 ∈ ℤ
divalglem1.3 𝐷 ≠ 0
divalglem2.4 𝑆 = {𝑟 ∈ ℕ0𝐷 ∥ (𝑁𝑟)}
divalglem5.5 𝑅 = inf(𝑆, ℝ, < )
Assertion
Ref Expression
divalglem5 (0 ≤ 𝑅𝑅 < (abs‘𝐷))
Distinct variable groups:   𝐷,𝑟   𝑁,𝑟
Allowed substitution hints:   𝑅(𝑟)   𝑆(𝑟)

Proof of Theorem divalglem5
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 divalglem5.5 . . . . . 6 𝑅 = inf(𝑆, ℝ, < )
2 divalglem0.1 . . . . . . 7 𝑁 ∈ ℤ
3 divalglem0.2 . . . . . . 7 𝐷 ∈ ℤ
4 divalglem1.3 . . . . . . 7 𝐷 ≠ 0
5 divalglem2.4 . . . . . . 7 𝑆 = {𝑟 ∈ ℕ0𝐷 ∥ (𝑁𝑟)}
62, 3, 4, 5divalglem2 15745 . . . . . 6 inf(𝑆, ℝ, < ) ∈ 𝑆
71, 6eqeltri 2909 . . . . 5 𝑅𝑆
8 oveq2 7163 . . . . . . 7 (𝑥 = 𝑅 → (𝑁𝑥) = (𝑁𝑅))
98breq2d 5077 . . . . . 6 (𝑥 = 𝑅 → (𝐷 ∥ (𝑁𝑥) ↔ 𝐷 ∥ (𝑁𝑅)))
10 oveq2 7163 . . . . . . . . 9 (𝑟 = 𝑥 → (𝑁𝑟) = (𝑁𝑥))
1110breq2d 5077 . . . . . . . 8 (𝑟 = 𝑥 → (𝐷 ∥ (𝑁𝑟) ↔ 𝐷 ∥ (𝑁𝑥)))
1211cbvrabv 3491 . . . . . . 7 {𝑟 ∈ ℕ0𝐷 ∥ (𝑁𝑟)} = {𝑥 ∈ ℕ0𝐷 ∥ (𝑁𝑥)}
135, 12eqtri 2844 . . . . . 6 𝑆 = {𝑥 ∈ ℕ0𝐷 ∥ (𝑁𝑥)}
149, 13elrab2 3682 . . . . 5 (𝑅𝑆 ↔ (𝑅 ∈ ℕ0𝐷 ∥ (𝑁𝑅)))
157, 14mpbi 232 . . . 4 (𝑅 ∈ ℕ0𝐷 ∥ (𝑁𝑅))
1615simpli 486 . . 3 𝑅 ∈ ℕ0
1716nn0ge0i 11923 . 2 0 ≤ 𝑅
18 nnabscl 14684 . . . . . . 7 ((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) → (abs‘𝐷) ∈ ℕ)
193, 4, 18mp2an 690 . . . . . 6 (abs‘𝐷) ∈ ℕ
2019nngt0i 11675 . . . . 5 0 < (abs‘𝐷)
21 0re 10642 . . . . . 6 0 ∈ ℝ
22 zcn 11985 . . . . . . . 8 (𝐷 ∈ ℤ → 𝐷 ∈ ℂ)
233, 22ax-mp 5 . . . . . . 7 𝐷 ∈ ℂ
2423abscli 14754 . . . . . 6 (abs‘𝐷) ∈ ℝ
2521, 24ltnlei 10760 . . . . 5 (0 < (abs‘𝐷) ↔ ¬ (abs‘𝐷) ≤ 0)
2620, 25mpbi 232 . . . 4 ¬ (abs‘𝐷) ≤ 0
275ssrab3 4056 . . . . . . . 8 𝑆 ⊆ ℕ0
28 nn0uz 12279 . . . . . . . 8 0 = (ℤ‘0)
2927, 28sseqtri 4002 . . . . . . 7 𝑆 ⊆ (ℤ‘0)
30 nn0abscl 14671 . . . . . . . . . 10 (𝐷 ∈ ℤ → (abs‘𝐷) ∈ ℕ0)
313, 30ax-mp 5 . . . . . . . . 9 (abs‘𝐷) ∈ ℕ0
32 nn0sub2 12042 . . . . . . . . 9 (((abs‘𝐷) ∈ ℕ0𝑅 ∈ ℕ0 ∧ (abs‘𝐷) ≤ 𝑅) → (𝑅 − (abs‘𝐷)) ∈ ℕ0)
3331, 16, 32mp3an12 1447 . . . . . . . 8 ((abs‘𝐷) ≤ 𝑅 → (𝑅 − (abs‘𝐷)) ∈ ℕ0)
3415a1i 11 . . . . . . . . 9 ((abs‘𝐷) ≤ 𝑅 → (𝑅 ∈ ℕ0𝐷 ∥ (𝑁𝑅)))
35 nn0z 12004 . . . . . . . . . . 11 (𝑅 ∈ ℕ0𝑅 ∈ ℤ)
36 1z 12011 . . . . . . . . . . . . 13 1 ∈ ℤ
372, 3divalglem0 15743 . . . . . . . . . . . . 13 ((𝑅 ∈ ℤ ∧ 1 ∈ ℤ) → (𝐷 ∥ (𝑁𝑅) → 𝐷 ∥ (𝑁 − (𝑅 − (1 · (abs‘𝐷))))))
3836, 37mpan2 689 . . . . . . . . . . . 12 (𝑅 ∈ ℤ → (𝐷 ∥ (𝑁𝑅) → 𝐷 ∥ (𝑁 − (𝑅 − (1 · (abs‘𝐷))))))
3924recni 10654 . . . . . . . . . . . . . . . 16 (abs‘𝐷) ∈ ℂ
4039mulid2i 10645 . . . . . . . . . . . . . . 15 (1 · (abs‘𝐷)) = (abs‘𝐷)
4140oveq2i 7166 . . . . . . . . . . . . . 14 (𝑅 − (1 · (abs‘𝐷))) = (𝑅 − (abs‘𝐷))
4241oveq2i 7166 . . . . . . . . . . . . 13 (𝑁 − (𝑅 − (1 · (abs‘𝐷)))) = (𝑁 − (𝑅 − (abs‘𝐷)))
4342breq2i 5073 . . . . . . . . . . . 12 (𝐷 ∥ (𝑁 − (𝑅 − (1 · (abs‘𝐷)))) ↔ 𝐷 ∥ (𝑁 − (𝑅 − (abs‘𝐷))))
4438, 43syl6ib 253 . . . . . . . . . . 11 (𝑅 ∈ ℤ → (𝐷 ∥ (𝑁𝑅) → 𝐷 ∥ (𝑁 − (𝑅 − (abs‘𝐷)))))
4535, 44syl 17 . . . . . . . . . 10 (𝑅 ∈ ℕ0 → (𝐷 ∥ (𝑁𝑅) → 𝐷 ∥ (𝑁 − (𝑅 − (abs‘𝐷)))))
4645imp 409 . . . . . . . . 9 ((𝑅 ∈ ℕ0𝐷 ∥ (𝑁𝑅)) → 𝐷 ∥ (𝑁 − (𝑅 − (abs‘𝐷))))
4734, 46syl 17 . . . . . . . 8 ((abs‘𝐷) ≤ 𝑅𝐷 ∥ (𝑁 − (𝑅 − (abs‘𝐷))))
48 oveq2 7163 . . . . . . . . . 10 (𝑥 = (𝑅 − (abs‘𝐷)) → (𝑁𝑥) = (𝑁 − (𝑅 − (abs‘𝐷))))
4948breq2d 5077 . . . . . . . . 9 (𝑥 = (𝑅 − (abs‘𝐷)) → (𝐷 ∥ (𝑁𝑥) ↔ 𝐷 ∥ (𝑁 − (𝑅 − (abs‘𝐷)))))
5049, 13elrab2 3682 . . . . . . . 8 ((𝑅 − (abs‘𝐷)) ∈ 𝑆 ↔ ((𝑅 − (abs‘𝐷)) ∈ ℕ0𝐷 ∥ (𝑁 − (𝑅 − (abs‘𝐷)))))
5133, 47, 50sylanbrc 585 . . . . . . 7 ((abs‘𝐷) ≤ 𝑅 → (𝑅 − (abs‘𝐷)) ∈ 𝑆)
52 infssuzle 12330 . . . . . . 7 ((𝑆 ⊆ (ℤ‘0) ∧ (𝑅 − (abs‘𝐷)) ∈ 𝑆) → inf(𝑆, ℝ, < ) ≤ (𝑅 − (abs‘𝐷)))
5329, 51, 52sylancr 589 . . . . . 6 ((abs‘𝐷) ≤ 𝑅 → inf(𝑆, ℝ, < ) ≤ (𝑅 − (abs‘𝐷)))
541, 53eqbrtrid 5100 . . . . 5 ((abs‘𝐷) ≤ 𝑅𝑅 ≤ (𝑅 − (abs‘𝐷)))
5534simpld 497 . . . . . . . 8 ((abs‘𝐷) ≤ 𝑅𝑅 ∈ ℕ0)
5655nn0red 11955 . . . . . . 7 ((abs‘𝐷) ≤ 𝑅𝑅 ∈ ℝ)
57 lesub 11118 . . . . . . . 8 ((𝑅 ∈ ℝ ∧ 𝑅 ∈ ℝ ∧ (abs‘𝐷) ∈ ℝ) → (𝑅 ≤ (𝑅 − (abs‘𝐷)) ↔ (abs‘𝐷) ≤ (𝑅𝑅)))
5824, 57mp3an3 1446 . . . . . . 7 ((𝑅 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (𝑅 ≤ (𝑅 − (abs‘𝐷)) ↔ (abs‘𝐷) ≤ (𝑅𝑅)))
5956, 56, 58syl2anc 586 . . . . . 6 ((abs‘𝐷) ≤ 𝑅 → (𝑅 ≤ (𝑅 − (abs‘𝐷)) ↔ (abs‘𝐷) ≤ (𝑅𝑅)))
6056recnd 10668 . . . . . . . 8 ((abs‘𝐷) ≤ 𝑅𝑅 ∈ ℂ)
6160subidd 10984 . . . . . . 7 ((abs‘𝐷) ≤ 𝑅 → (𝑅𝑅) = 0)
6261breq2d 5077 . . . . . 6 ((abs‘𝐷) ≤ 𝑅 → ((abs‘𝐷) ≤ (𝑅𝑅) ↔ (abs‘𝐷) ≤ 0))
6359, 62bitrd 281 . . . . 5 ((abs‘𝐷) ≤ 𝑅 → (𝑅 ≤ (𝑅 − (abs‘𝐷)) ↔ (abs‘𝐷) ≤ 0))
6454, 63mpbid 234 . . . 4 ((abs‘𝐷) ≤ 𝑅 → (abs‘𝐷) ≤ 0)
6526, 64mto 199 . . 3 ¬ (abs‘𝐷) ≤ 𝑅
6616nn0rei 11907 . . . 4 𝑅 ∈ ℝ
6766, 24ltnlei 10760 . . 3 (𝑅 < (abs‘𝐷) ↔ ¬ (abs‘𝐷) ≤ 𝑅)
6865, 67mpbir 233 . 2 𝑅 < (abs‘𝐷)
6917, 68pm3.2i 473 1 (0 ≤ 𝑅𝑅 < (abs‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wne 3016  {crab 3142  wss 3935   class class class wbr 5065  cfv 6354  (class class class)co 7155  infcinf 8904  cc 10534  cr 10535  0cc0 10536  1c1 10537   · cmul 10541   < clt 10674  cle 10675  cmin 10869  cn 11637  0cn0 11896  cz 11980  cuz 12242  abscabs 14592  cdvds 15606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-er 8288  df-en 8509  df-dom 8510  df-sdom 8511  df-sup 8905  df-inf 8906  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-2 11699  df-3 11700  df-n0 11897  df-z 11981  df-uz 12243  df-rp 12389  df-seq 13369  df-exp 13429  df-cj 14457  df-re 14458  df-im 14459  df-sqrt 14593  df-abs 14594  df-dvds 15607
This theorem is referenced by:  divalglem9  15751
  Copyright terms: Public domain W3C validator