MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divalglem8 Structured version   Visualization version   GIF version

Theorem divalglem8 15745
Description: Lemma for divalg 15748. (Contributed by Paul Chapman, 21-Mar-2011.)
Hypotheses
Ref Expression
divalglem8.1 𝑁 ∈ ℤ
divalglem8.2 𝐷 ∈ ℤ
divalglem8.3 𝐷 ≠ 0
divalglem8.4 𝑆 = {𝑟 ∈ ℕ0𝐷 ∥ (𝑁𝑟)}
Assertion
Ref Expression
divalglem8 (((𝑋𝑆𝑌𝑆) ∧ (𝑋 < (abs‘𝐷) ∧ 𝑌 < (abs‘𝐷))) → (𝐾 ∈ ℤ → ((𝐾 · (abs‘𝐷)) = (𝑌𝑋) → 𝑋 = 𝑌)))
Distinct variable groups:   𝐷,𝑟   𝑁,𝑟
Allowed substitution hints:   𝑆(𝑟)   𝐾(𝑟)   𝑋(𝑟)   𝑌(𝑟)

Proof of Theorem divalglem8
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 divalglem8.4 . . . . . . . . . . . . 13 𝑆 = {𝑟 ∈ ℕ0𝐷 ∥ (𝑁𝑟)}
21ssrab3 4057 . . . . . . . . . . . 12 𝑆 ⊆ ℕ0
3 nn0sscn 11896 . . . . . . . . . . . 12 0 ⊆ ℂ
42, 3sstri 3976 . . . . . . . . . . 11 𝑆 ⊆ ℂ
54sseli 3963 . . . . . . . . . 10 (𝑌𝑆𝑌 ∈ ℂ)
64sseli 3963 . . . . . . . . . 10 (𝑋𝑆𝑋 ∈ ℂ)
7 divalglem8.2 . . . . . . . . . . . . . 14 𝐷 ∈ ℤ
8 divalglem8.3 . . . . . . . . . . . . . 14 𝐷 ≠ 0
9 nnabscl 14679 . . . . . . . . . . . . . 14 ((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) → (abs‘𝐷) ∈ ℕ)
107, 8, 9mp2an 690 . . . . . . . . . . . . 13 (abs‘𝐷) ∈ ℕ
1110nnzi 12000 . . . . . . . . . . . 12 (abs‘𝐷) ∈ ℤ
12 zmulcl 12025 . . . . . . . . . . . 12 ((𝐾 ∈ ℤ ∧ (abs‘𝐷) ∈ ℤ) → (𝐾 · (abs‘𝐷)) ∈ ℤ)
1311, 12mpan2 689 . . . . . . . . . . 11 (𝐾 ∈ ℤ → (𝐾 · (abs‘𝐷)) ∈ ℤ)
1413zcnd 12082 . . . . . . . . . 10 (𝐾 ∈ ℤ → (𝐾 · (abs‘𝐷)) ∈ ℂ)
15 subadd 10883 . . . . . . . . . 10 ((𝑌 ∈ ℂ ∧ 𝑋 ∈ ℂ ∧ (𝐾 · (abs‘𝐷)) ∈ ℂ) → ((𝑌𝑋) = (𝐾 · (abs‘𝐷)) ↔ (𝑋 + (𝐾 · (abs‘𝐷))) = 𝑌))
165, 6, 14, 15syl3an 1156 . . . . . . . . 9 ((𝑌𝑆𝑋𝑆𝐾 ∈ ℤ) → ((𝑌𝑋) = (𝐾 · (abs‘𝐷)) ↔ (𝑋 + (𝐾 · (abs‘𝐷))) = 𝑌))
17163com12 1119 . . . . . . . 8 ((𝑋𝑆𝑌𝑆𝐾 ∈ ℤ) → ((𝑌𝑋) = (𝐾 · (abs‘𝐷)) ↔ (𝑋 + (𝐾 · (abs‘𝐷))) = 𝑌))
18 eqcom 2828 . . . . . . . 8 ((𝑌𝑋) = (𝐾 · (abs‘𝐷)) ↔ (𝐾 · (abs‘𝐷)) = (𝑌𝑋))
19 eqcom 2828 . . . . . . . 8 ((𝑋 + (𝐾 · (abs‘𝐷))) = 𝑌𝑌 = (𝑋 + (𝐾 · (abs‘𝐷))))
2017, 18, 193bitr3g 315 . . . . . . 7 ((𝑋𝑆𝑌𝑆𝐾 ∈ ℤ) → ((𝐾 · (abs‘𝐷)) = (𝑌𝑋) ↔ 𝑌 = (𝑋 + (𝐾 · (abs‘𝐷)))))
21203adant1r 1173 . . . . . 6 (((𝑋𝑆𝑋 < (abs‘𝐷)) ∧ 𝑌𝑆𝐾 ∈ ℤ) → ((𝐾 · (abs‘𝐷)) = (𝑌𝑋) ↔ 𝑌 = (𝑋 + (𝐾 · (abs‘𝐷)))))
22213adant2r 1175 . . . . 5 (((𝑋𝑆𝑋 < (abs‘𝐷)) ∧ (𝑌𝑆𝑌 < (abs‘𝐷)) ∧ 𝐾 ∈ ℤ) → ((𝐾 · (abs‘𝐷)) = (𝑌𝑋) ↔ 𝑌 = (𝑋 + (𝐾 · (abs‘𝐷)))))
23 breq1 5062 . . . . . . . . . . . 12 (𝑧 = 𝑌 → (𝑧 < (abs‘𝐷) ↔ 𝑌 < (abs‘𝐷)))
24 eleq1 2900 . . . . . . . . . . . 12 (𝑧 = 𝑌 → (𝑧 ∈ (0...((abs‘𝐷) − 1)) ↔ 𝑌 ∈ (0...((abs‘𝐷) − 1))))
2523, 24imbi12d 347 . . . . . . . . . . 11 (𝑧 = 𝑌 → ((𝑧 < (abs‘𝐷) → 𝑧 ∈ (0...((abs‘𝐷) − 1))) ↔ (𝑌 < (abs‘𝐷) → 𝑌 ∈ (0...((abs‘𝐷) − 1)))))
262sseli 3963 . . . . . . . . . . . . . . . 16 (𝑧𝑆𝑧 ∈ ℕ0)
27 elnn0z 11988 . . . . . . . . . . . . . . . 16 (𝑧 ∈ ℕ0 ↔ (𝑧 ∈ ℤ ∧ 0 ≤ 𝑧))
2826, 27sylib 220 . . . . . . . . . . . . . . 15 (𝑧𝑆 → (𝑧 ∈ ℤ ∧ 0 ≤ 𝑧))
2928anim1i 616 . . . . . . . . . . . . . 14 ((𝑧𝑆𝑧 < (abs‘𝐷)) → ((𝑧 ∈ ℤ ∧ 0 ≤ 𝑧) ∧ 𝑧 < (abs‘𝐷)))
30 df-3an 1085 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℤ ∧ 0 ≤ 𝑧𝑧 < (abs‘𝐷)) ↔ ((𝑧 ∈ ℤ ∧ 0 ≤ 𝑧) ∧ 𝑧 < (abs‘𝐷)))
3129, 30sylibr 236 . . . . . . . . . . . . 13 ((𝑧𝑆𝑧 < (abs‘𝐷)) → (𝑧 ∈ ℤ ∧ 0 ≤ 𝑧𝑧 < (abs‘𝐷)))
32 0z 11986 . . . . . . . . . . . . . 14 0 ∈ ℤ
33 elfzm11 12972 . . . . . . . . . . . . . 14 ((0 ∈ ℤ ∧ (abs‘𝐷) ∈ ℤ) → (𝑧 ∈ (0...((abs‘𝐷) − 1)) ↔ (𝑧 ∈ ℤ ∧ 0 ≤ 𝑧𝑧 < (abs‘𝐷))))
3432, 11, 33mp2an 690 . . . . . . . . . . . . 13 (𝑧 ∈ (0...((abs‘𝐷) − 1)) ↔ (𝑧 ∈ ℤ ∧ 0 ≤ 𝑧𝑧 < (abs‘𝐷)))
3531, 34sylibr 236 . . . . . . . . . . . 12 ((𝑧𝑆𝑧 < (abs‘𝐷)) → 𝑧 ∈ (0...((abs‘𝐷) − 1)))
3635ex 415 . . . . . . . . . . 11 (𝑧𝑆 → (𝑧 < (abs‘𝐷) → 𝑧 ∈ (0...((abs‘𝐷) − 1))))
3725, 36vtoclga 3574 . . . . . . . . . 10 (𝑌𝑆 → (𝑌 < (abs‘𝐷) → 𝑌 ∈ (0...((abs‘𝐷) − 1))))
38 eleq1 2900 . . . . . . . . . . 11 (𝑌 = (𝑋 + (𝐾 · (abs‘𝐷))) → (𝑌 ∈ (0...((abs‘𝐷) − 1)) ↔ (𝑋 + (𝐾 · (abs‘𝐷))) ∈ (0...((abs‘𝐷) − 1))))
3938biimpd 231 . . . . . . . . . 10 (𝑌 = (𝑋 + (𝐾 · (abs‘𝐷))) → (𝑌 ∈ (0...((abs‘𝐷) − 1)) → (𝑋 + (𝐾 · (abs‘𝐷))) ∈ (0...((abs‘𝐷) − 1))))
4037, 39sylan9 510 . . . . . . . . 9 ((𝑌𝑆𝑌 = (𝑋 + (𝐾 · (abs‘𝐷)))) → (𝑌 < (abs‘𝐷) → (𝑋 + (𝐾 · (abs‘𝐷))) ∈ (0...((abs‘𝐷) − 1))))
4140impancom 454 . . . . . . . 8 ((𝑌𝑆𝑌 < (abs‘𝐷)) → (𝑌 = (𝑋 + (𝐾 · (abs‘𝐷))) → (𝑋 + (𝐾 · (abs‘𝐷))) ∈ (0...((abs‘𝐷) − 1))))
42413ad2ant2 1130 . . . . . . 7 (((𝑋𝑆𝑋 < (abs‘𝐷)) ∧ (𝑌𝑆𝑌 < (abs‘𝐷)) ∧ 𝐾 ∈ ℤ) → (𝑌 = (𝑋 + (𝐾 · (abs‘𝐷))) → (𝑋 + (𝐾 · (abs‘𝐷))) ∈ (0...((abs‘𝐷) − 1))))
43 breq1 5062 . . . . . . . . . . . . 13 (𝑧 = 𝑋 → (𝑧 < (abs‘𝐷) ↔ 𝑋 < (abs‘𝐷)))
44 eleq1 2900 . . . . . . . . . . . . 13 (𝑧 = 𝑋 → (𝑧 ∈ (0...((abs‘𝐷) − 1)) ↔ 𝑋 ∈ (0...((abs‘𝐷) − 1))))
4543, 44imbi12d 347 . . . . . . . . . . . 12 (𝑧 = 𝑋 → ((𝑧 < (abs‘𝐷) → 𝑧 ∈ (0...((abs‘𝐷) − 1))) ↔ (𝑋 < (abs‘𝐷) → 𝑋 ∈ (0...((abs‘𝐷) − 1)))))
4645, 36vtoclga 3574 . . . . . . . . . . 11 (𝑋𝑆 → (𝑋 < (abs‘𝐷) → 𝑋 ∈ (0...((abs‘𝐷) − 1))))
4746imp 409 . . . . . . . . . 10 ((𝑋𝑆𝑋 < (abs‘𝐷)) → 𝑋 ∈ (0...((abs‘𝐷) − 1)))
487, 8divalglem7 15744 . . . . . . . . . 10 ((𝑋 ∈ (0...((abs‘𝐷) − 1)) ∧ 𝐾 ∈ ℤ) → (𝐾 ≠ 0 → ¬ (𝑋 + (𝐾 · (abs‘𝐷))) ∈ (0...((abs‘𝐷) − 1))))
4947, 48sylan 582 . . . . . . . . 9 (((𝑋𝑆𝑋 < (abs‘𝐷)) ∧ 𝐾 ∈ ℤ) → (𝐾 ≠ 0 → ¬ (𝑋 + (𝐾 · (abs‘𝐷))) ∈ (0...((abs‘𝐷) − 1))))
50493adant2 1127 . . . . . . . 8 (((𝑋𝑆𝑋 < (abs‘𝐷)) ∧ (𝑌𝑆𝑌 < (abs‘𝐷)) ∧ 𝐾 ∈ ℤ) → (𝐾 ≠ 0 → ¬ (𝑋 + (𝐾 · (abs‘𝐷))) ∈ (0...((abs‘𝐷) − 1))))
5150con2d 136 . . . . . . 7 (((𝑋𝑆𝑋 < (abs‘𝐷)) ∧ (𝑌𝑆𝑌 < (abs‘𝐷)) ∧ 𝐾 ∈ ℤ) → ((𝑋 + (𝐾 · (abs‘𝐷))) ∈ (0...((abs‘𝐷) − 1)) → ¬ 𝐾 ≠ 0))
5242, 51syld 47 . . . . . 6 (((𝑋𝑆𝑋 < (abs‘𝐷)) ∧ (𝑌𝑆𝑌 < (abs‘𝐷)) ∧ 𝐾 ∈ ℤ) → (𝑌 = (𝑋 + (𝐾 · (abs‘𝐷))) → ¬ 𝐾 ≠ 0))
53 df-ne 3017 . . . . . . 7 (𝐾 ≠ 0 ↔ ¬ 𝐾 = 0)
5453con2bii 360 . . . . . 6 (𝐾 = 0 ↔ ¬ 𝐾 ≠ 0)
5552, 54syl6ibr 254 . . . . 5 (((𝑋𝑆𝑋 < (abs‘𝐷)) ∧ (𝑌𝑆𝑌 < (abs‘𝐷)) ∧ 𝐾 ∈ ℤ) → (𝑌 = (𝑋 + (𝐾 · (abs‘𝐷))) → 𝐾 = 0))
5622, 55sylbid 242 . . . 4 (((𝑋𝑆𝑋 < (abs‘𝐷)) ∧ (𝑌𝑆𝑌 < (abs‘𝐷)) ∧ 𝐾 ∈ ℤ) → ((𝐾 · (abs‘𝐷)) = (𝑌𝑋) → 𝐾 = 0))
57 oveq1 7157 . . . . . . . . . . 11 (𝐾 = 0 → (𝐾 · (abs‘𝐷)) = (0 · (abs‘𝐷)))
5810nncni 11642 . . . . . . . . . . . 12 (abs‘𝐷) ∈ ℂ
5958mul02i 10823 . . . . . . . . . . 11 (0 · (abs‘𝐷)) = 0
6057, 59syl6eq 2872 . . . . . . . . . 10 (𝐾 = 0 → (𝐾 · (abs‘𝐷)) = 0)
6160eqeq1d 2823 . . . . . . . . 9 (𝐾 = 0 → ((𝐾 · (abs‘𝐷)) = (𝑌𝑋) ↔ 0 = (𝑌𝑋)))
6261biimpac 481 . . . . . . . 8 (((𝐾 · (abs‘𝐷)) = (𝑌𝑋) ∧ 𝐾 = 0) → 0 = (𝑌𝑋))
63 subeq0 10906 . . . . . . . . . 10 ((𝑌 ∈ ℂ ∧ 𝑋 ∈ ℂ) → ((𝑌𝑋) = 0 ↔ 𝑌 = 𝑋))
645, 6, 63syl2anr 598 . . . . . . . . 9 ((𝑋𝑆𝑌𝑆) → ((𝑌𝑋) = 0 ↔ 𝑌 = 𝑋))
65 eqcom 2828 . . . . . . . . 9 ((𝑌𝑋) = 0 ↔ 0 = (𝑌𝑋))
66 eqcom 2828 . . . . . . . . 9 (𝑌 = 𝑋𝑋 = 𝑌)
6764, 65, 663bitr3g 315 . . . . . . . 8 ((𝑋𝑆𝑌𝑆) → (0 = (𝑌𝑋) ↔ 𝑋 = 𝑌))
6862, 67syl5ib 246 . . . . . . 7 ((𝑋𝑆𝑌𝑆) → (((𝐾 · (abs‘𝐷)) = (𝑌𝑋) ∧ 𝐾 = 0) → 𝑋 = 𝑌))
6968ad2ant2r 745 . . . . . 6 (((𝑋𝑆𝑋 < (abs‘𝐷)) ∧ (𝑌𝑆𝑌 < (abs‘𝐷))) → (((𝐾 · (abs‘𝐷)) = (𝑌𝑋) ∧ 𝐾 = 0) → 𝑋 = 𝑌))
70693adant3 1128 . . . . 5 (((𝑋𝑆𝑋 < (abs‘𝐷)) ∧ (𝑌𝑆𝑌 < (abs‘𝐷)) ∧ 𝐾 ∈ ℤ) → (((𝐾 · (abs‘𝐷)) = (𝑌𝑋) ∧ 𝐾 = 0) → 𝑋 = 𝑌))
7170expd 418 . . . 4 (((𝑋𝑆𝑋 < (abs‘𝐷)) ∧ (𝑌𝑆𝑌 < (abs‘𝐷)) ∧ 𝐾 ∈ ℤ) → ((𝐾 · (abs‘𝐷)) = (𝑌𝑋) → (𝐾 = 0 → 𝑋 = 𝑌)))
7256, 71mpdd 43 . . 3 (((𝑋𝑆𝑋 < (abs‘𝐷)) ∧ (𝑌𝑆𝑌 < (abs‘𝐷)) ∧ 𝐾 ∈ ℤ) → ((𝐾 · (abs‘𝐷)) = (𝑌𝑋) → 𝑋 = 𝑌))
73723expia 1117 . 2 (((𝑋𝑆𝑋 < (abs‘𝐷)) ∧ (𝑌𝑆𝑌 < (abs‘𝐷))) → (𝐾 ∈ ℤ → ((𝐾 · (abs‘𝐷)) = (𝑌𝑋) → 𝑋 = 𝑌)))
7473an4s 658 1 (((𝑋𝑆𝑌𝑆) ∧ (𝑋 < (abs‘𝐷) ∧ 𝑌 < (abs‘𝐷))) → (𝐾 ∈ ℤ → ((𝐾 · (abs‘𝐷)) = (𝑌𝑋) → 𝑋 = 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wne 3016  {crab 3142   class class class wbr 5059  cfv 6350  (class class class)co 7150  cc 10529  0cc0 10531  1c1 10532   + caddc 10534   · cmul 10536   < clt 10669  cle 10670  cmin 10864  cn 11632  0cn0 11891  cz 11975  ...cfz 12886  abscabs 14587  cdvds 15601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-sup 8900  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-rp 12384  df-fz 12887  df-seq 13364  df-exp 13424  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589
This theorem is referenced by:  divalglem9  15746
  Copyright terms: Public domain W3C validator