MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divccncf Structured version   Visualization version   GIF version

Theorem divccncf 23506
Description: Division by a constant is continuous. (Contributed by Paul Chapman, 28-Nov-2007.)
Hypothesis
Ref Expression
divccncf.1 𝐹 = (𝑥 ∈ ℂ ↦ (𝑥 / 𝐴))
Assertion
Ref Expression
divccncf ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → 𝐹 ∈ (ℂ–cn→ℂ))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem divccncf
StepHypRef Expression
1 divccncf.1 . . 3 𝐹 = (𝑥 ∈ ℂ ↦ (𝑥 / 𝐴))
2 divrec2 11307 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝑥 / 𝐴) = ((1 / 𝐴) · 𝑥))
323expb 1114 . . . . 5 ((𝑥 ∈ ℂ ∧ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) → (𝑥 / 𝐴) = ((1 / 𝐴) · 𝑥))
43ancoms 461 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝑥 ∈ ℂ) → (𝑥 / 𝐴) = ((1 / 𝐴) · 𝑥))
54mpteq2dva 5152 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝑥 ∈ ℂ ↦ (𝑥 / 𝐴)) = (𝑥 ∈ ℂ ↦ ((1 / 𝐴) · 𝑥)))
61, 5syl5eq 2866 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → 𝐹 = (𝑥 ∈ ℂ ↦ ((1 / 𝐴) · 𝑥)))
7 reccl 11297 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈ ℂ)
8 eqid 2819 . . . 4 (𝑥 ∈ ℂ ↦ ((1 / 𝐴) · 𝑥)) = (𝑥 ∈ ℂ ↦ ((1 / 𝐴) · 𝑥))
98mulc1cncf 23505 . . 3 ((1 / 𝐴) ∈ ℂ → (𝑥 ∈ ℂ ↦ ((1 / 𝐴) · 𝑥)) ∈ (ℂ–cn→ℂ))
107, 9syl 17 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝑥 ∈ ℂ ↦ ((1 / 𝐴) · 𝑥)) ∈ (ℂ–cn→ℂ))
116, 10eqeltrd 2911 1 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → 𝐹 ∈ (ℂ–cn→ℂ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1530  wcel 2107  wne 3014  cmpt 5137  (class class class)co 7148  cc 10527  0cc0 10529  1c1 10530   · cmul 10534   / cdiv 11289  cnccncf 23476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-er 8281  df-map 8400  df-en 8502  df-dom 8503  df-sdom 8504  df-sup 8898  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12382  df-seq 13362  df-exp 13422  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-cncf 23478
This theorem is referenced by:  dvlip  24582  sincn  25024  coscn  25025  efopn  25233  areaquad  39813  fourierdlem62  42443
  Copyright terms: Public domain W3C validator