MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divcnvshft Structured version   Visualization version   GIF version

Theorem divcnvshft 14675
Description: Limit of a ratio function. (Contributed by Scott Fenton, 16-Dec-2017.)
Hypotheses
Ref Expression
divcnvshft.1 𝑍 = (ℤ𝑀)
divcnvshft.2 (𝜑𝑀 ∈ ℤ)
divcnvshft.3 (𝜑𝐴 ∈ ℂ)
divcnvshft.4 (𝜑𝐵 ∈ ℤ)
divcnvshft.5 (𝜑𝐹𝑉)
divcnvshft.6 ((𝜑𝑘𝑍) → (𝐹𝑘) = (𝐴 / (𝑘 + 𝐵)))
Assertion
Ref Expression
divcnvshft (𝜑𝐹 ⇝ 0)
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝐹   𝜑,𝑘   𝑘,𝑀   𝑘,𝑍
Allowed substitution hint:   𝑉(𝑘)

Proof of Theorem divcnvshft
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 divcnvshft.3 . . . 4 (𝜑𝐴 ∈ ℂ)
2 divcnv 14673 . . . 4 (𝐴 ∈ ℂ → (𝑚 ∈ ℕ ↦ (𝐴 / 𝑚)) ⇝ 0)
31, 2syl 17 . . 3 (𝜑 → (𝑚 ∈ ℕ ↦ (𝐴 / 𝑚)) ⇝ 0)
4 nnssz 11478 . . . . . . 7 ℕ ⊆ ℤ
5 resmpt 5527 . . . . . . 7 (ℕ ⊆ ℤ → ((𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ↾ ℕ) = (𝑚 ∈ ℕ ↦ (𝐴 / 𝑚)))
64, 5ax-mp 5 . . . . . 6 ((𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ↾ ℕ) = (𝑚 ∈ ℕ ↦ (𝐴 / 𝑚))
7 nnuz 11805 . . . . . . 7 ℕ = (ℤ‘1)
87reseq2i 5468 . . . . . 6 ((𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ↾ ℕ) = ((𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ↾ (ℤ‘1))
96, 8eqtr3i 2716 . . . . 5 (𝑚 ∈ ℕ ↦ (𝐴 / 𝑚)) = ((𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ↾ (ℤ‘1))
109breq1i 4735 . . . 4 ((𝑚 ∈ ℕ ↦ (𝐴 / 𝑚)) ⇝ 0 ↔ ((𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ↾ (ℤ‘1)) ⇝ 0)
11 1z 11488 . . . . 5 1 ∈ ℤ
12 zex 11467 . . . . . 6 ℤ ∈ V
1312mptex 6570 . . . . 5 (𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ∈ V
14 climres 14394 . . . . 5 ((1 ∈ ℤ ∧ (𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ∈ V) → (((𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ↾ (ℤ‘1)) ⇝ 0 ↔ (𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ⇝ 0))
1511, 13, 14mp2an 710 . . . 4 (((𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ↾ (ℤ‘1)) ⇝ 0 ↔ (𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ⇝ 0)
1610, 15bitri 264 . . 3 ((𝑚 ∈ ℕ ↦ (𝐴 / 𝑚)) ⇝ 0 ↔ (𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ⇝ 0)
173, 16sylib 208 . 2 (𝜑 → (𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ⇝ 0)
18 divcnvshft.1 . . 3 𝑍 = (ℤ𝑀)
19 divcnvshft.2 . . 3 (𝜑𝑀 ∈ ℤ)
20 divcnvshft.4 . . 3 (𝜑𝐵 ∈ ℤ)
21 divcnvshft.5 . . 3 (𝜑𝐹𝑉)
2213a1i 11 . . 3 (𝜑 → (𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ∈ V)
23 uzssz 11788 . . . . . . . . 9 (ℤ𝑀) ⊆ ℤ
2418, 23eqsstri 3709 . . . . . . . 8 𝑍 ⊆ ℤ
2524sseli 3673 . . . . . . 7 (𝑘𝑍𝑘 ∈ ℤ)
2625adantl 473 . . . . . 6 ((𝜑𝑘𝑍) → 𝑘 ∈ ℤ)
2720adantr 472 . . . . . 6 ((𝜑𝑘𝑍) → 𝐵 ∈ ℤ)
2826, 27zaddcld 11567 . . . . 5 ((𝜑𝑘𝑍) → (𝑘 + 𝐵) ∈ ℤ)
29 oveq2 6741 . . . . . 6 (𝑚 = (𝑘 + 𝐵) → (𝐴 / 𝑚) = (𝐴 / (𝑘 + 𝐵)))
30 eqid 2692 . . . . . 6 (𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) = (𝑚 ∈ ℤ ↦ (𝐴 / 𝑚))
31 ovex 6761 . . . . . 6 (𝐴 / (𝑘 + 𝐵)) ∈ V
3229, 30, 31fvmpt 6364 . . . . 5 ((𝑘 + 𝐵) ∈ ℤ → ((𝑚 ∈ ℤ ↦ (𝐴 / 𝑚))‘(𝑘 + 𝐵)) = (𝐴 / (𝑘 + 𝐵)))
3328, 32syl 17 . . . 4 ((𝜑𝑘𝑍) → ((𝑚 ∈ ℤ ↦ (𝐴 / 𝑚))‘(𝑘 + 𝐵)) = (𝐴 / (𝑘 + 𝐵)))
34 divcnvshft.6 . . . 4 ((𝜑𝑘𝑍) → (𝐹𝑘) = (𝐴 / (𝑘 + 𝐵)))
3533, 34eqtr4d 2729 . . 3 ((𝜑𝑘𝑍) → ((𝑚 ∈ ℤ ↦ (𝐴 / 𝑚))‘(𝑘 + 𝐵)) = (𝐹𝑘))
3618, 19, 20, 21, 22, 35climshft2 14401 . 2 (𝜑 → (𝐹 ⇝ 0 ↔ (𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ⇝ 0))
3717, 36mpbird 247 1 (𝜑𝐹 ⇝ 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1564  wcel 2071  Vcvv 3272  wss 3648   class class class wbr 4728  cmpt 4805  cres 5188  cfv 5969  (class class class)co 6733  cc 10015  0cc0 10017  1c1 10018   + caddc 10020   / cdiv 10765  cn 11101  cz 11458  cuz 11768  cli 14303
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1818  ax-5 1920  ax-6 1986  ax-7 2022  ax-8 2073  ax-9 2080  ax-10 2100  ax-11 2115  ax-12 2128  ax-13 2323  ax-ext 2672  ax-rep 4847  ax-sep 4857  ax-nul 4865  ax-pow 4916  ax-pr 4979  ax-un 7034  ax-cnex 10073  ax-resscn 10074  ax-1cn 10075  ax-icn 10076  ax-addcl 10077  ax-addrcl 10078  ax-mulcl 10079  ax-mulrcl 10080  ax-mulcom 10081  ax-addass 10082  ax-mulass 10083  ax-distr 10084  ax-i2m1 10085  ax-1ne0 10086  ax-1rid 10087  ax-rnegex 10088  ax-rrecex 10089  ax-cnre 10090  ax-pre-lttri 10091  ax-pre-lttrn 10092  ax-pre-ltadd 10093  ax-pre-mulgt0 10094  ax-pre-sup 10095
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1567  df-ex 1786  df-nf 1791  df-sb 1979  df-eu 2543  df-mo 2544  df-clab 2679  df-cleq 2685  df-clel 2688  df-nfc 2823  df-ne 2865  df-nel 2968  df-ral 2987  df-rex 2988  df-reu 2989  df-rmo 2990  df-rab 2991  df-v 3274  df-sbc 3510  df-csb 3608  df-dif 3651  df-un 3653  df-in 3655  df-ss 3662  df-pss 3664  df-nul 3992  df-if 4163  df-pw 4236  df-sn 4254  df-pr 4256  df-tp 4258  df-op 4260  df-uni 4513  df-iun 4598  df-br 4729  df-opab 4789  df-mpt 4806  df-tr 4829  df-id 5096  df-eprel 5101  df-po 5107  df-so 5108  df-fr 5145  df-we 5147  df-xp 5192  df-rel 5193  df-cnv 5194  df-co 5195  df-dm 5196  df-rn 5197  df-res 5198  df-ima 5199  df-pred 5761  df-ord 5807  df-on 5808  df-lim 5809  df-suc 5810  df-iota 5932  df-fun 5971  df-fn 5972  df-f 5973  df-f1 5974  df-fo 5975  df-f1o 5976  df-fv 5977  df-riota 6694  df-ov 6736  df-oprab 6737  df-mpt2 6738  df-om 7151  df-2nd 7254  df-wrecs 7495  df-recs 7556  df-rdg 7594  df-er 7830  df-pm 7945  df-en 8041  df-dom 8042  df-sdom 8043  df-sup 8432  df-inf 8433  df-pnf 10157  df-mnf 10158  df-xr 10159  df-ltxr 10160  df-le 10161  df-sub 10349  df-neg 10350  df-div 10766  df-nn 11102  df-2 11160  df-3 11161  df-n0 11374  df-z 11459  df-uz 11769  df-rp 11915  df-fl 12676  df-seq 12885  df-exp 12944  df-shft 13895  df-cj 13927  df-re 13928  df-im 13929  df-sqrt 14063  df-abs 14064  df-clim 14307  df-rlim 14308
This theorem is referenced by:  binomcxplemrat  38936
  Copyright terms: Public domain W3C validator