MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divdiv1d Structured version   Visualization version   GIF version

Theorem divdiv1d 11441
Description: Division into a fraction. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
div1d.1 (𝜑𝐴 ∈ ℂ)
divcld.2 (𝜑𝐵 ∈ ℂ)
divmuld.3 (𝜑𝐶 ∈ ℂ)
divmuld.4 (𝜑𝐵 ≠ 0)
divdiv23d.5 (𝜑𝐶 ≠ 0)
Assertion
Ref Expression
divdiv1d (𝜑 → ((𝐴 / 𝐵) / 𝐶) = (𝐴 / (𝐵 · 𝐶)))

Proof of Theorem divdiv1d
StepHypRef Expression
1 div1d.1 . 2 (𝜑𝐴 ∈ ℂ)
2 divcld.2 . 2 (𝜑𝐵 ∈ ℂ)
3 divmuld.4 . 2 (𝜑𝐵 ≠ 0)
4 divmuld.3 . 2 (𝜑𝐶 ∈ ℂ)
5 divdiv23d.5 . 2 (𝜑𝐶 ≠ 0)
6 divdiv1 11345 . 2 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 / 𝐵) / 𝐶) = (𝐴 / (𝐵 · 𝐶)))
71, 2, 3, 4, 5, 6syl122anc 1375 1 (𝜑 → ((𝐴 / 𝐵) / 𝐶) = (𝐴 / (𝐵 · 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2110  wne 3016  (class class class)co 7150  cc 10529  0cc0 10531   · cmul 10536   / cdiv 11291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-po 5468  df-so 5469  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292
This theorem is referenced by:  discr  13595  hashf1  13809  bcfallfac  15392  eftlub  15456  tanval2  15480  sinhval  15501  sqrt2irrlem  15595  bitsp1  15774  4sqlem7  16274  4sqlem10  16277  uniioombl  24184  dvrec  24546  dvsincos  24572  dvcvx  24611  taylthlem2  24956  mcubic  25419  cubic2  25420  quart1lem  25427  quart1  25428  log2cnv  25516  log2tlbnd  25517  birthdaylem2  25524  efrlim  25541  bcmono  25847  m1lgs  25958  chto1lb  26048  vmalogdivsum2  26108  selberg3lem1  26127  selberg4lem1  26130  selberg4  26131  selberg34r  26141  pntrlog2bndlem2  26148  pntrlog2bndlem4  26150  pntpbnd2  26157  pntibndlem2  26161  pntlemg  26168  irrapxlem5  39416  divdiv3d  41620  mccllem  41871  clim1fr1  41875  sinaover2ne0  42142  dvnprodlem2  42225  wallispi2lem1  42350  stirlinglem3  42355  stirlinglem4  42356  stirlinglem7  42359  stirlinglem15  42367  dirker2re  42371  dirkerdenne0  42372  dirkertrigeqlem2  42378  dirkertrigeqlem3  42379  dirkertrigeq  42380  dirkercncflem1  42382  dirkercncflem2  42383  dirkercncflem4  42385  fourierdlem56  42441  fourierdlem66  42451  sqwvfourb  42508  fouriersw  42510  itscnhlc0xyqsol  44746
  Copyright terms: Public domain W3C validator