MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divge0d Structured version   Visualization version   GIF version

Theorem divge0d 11909
Description: The ratio of nonnegative and positive numbers is nonnegative. (Contributed by Mario Carneiro, 28-May-2016.)
Hypotheses
Ref Expression
rpgecld.1 (𝜑𝐴 ∈ ℝ)
rpgecld.2 (𝜑𝐵 ∈ ℝ+)
divge0d.3 (𝜑 → 0 ≤ 𝐴)
Assertion
Ref Expression
divge0d (𝜑 → 0 ≤ (𝐴 / 𝐵))

Proof of Theorem divge0d
StepHypRef Expression
1 rpgecld.1 . 2 (𝜑𝐴 ∈ ℝ)
2 divge0d.3 . 2 (𝜑 → 0 ≤ 𝐴)
3 rpgecld.2 . . 3 (𝜑𝐵 ∈ ℝ+)
43rpregt0d 11875 . 2 (𝜑 → (𝐵 ∈ ℝ ∧ 0 < 𝐵))
5 divge0 10889 . 2 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 ≤ (𝐴 / 𝐵))
61, 2, 4, 5syl21anc 1324 1 (𝜑 → 0 ≤ (𝐴 / 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  wcel 1989   class class class wbr 4651  (class class class)co 6647  cr 9932  0cc0 9933   < clt 10071  cle 10072   / cdiv 10681  +crp 11829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-8 1991  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-sep 4779  ax-nul 4787  ax-pow 4841  ax-pr 4904  ax-un 6946  ax-resscn 9990  ax-1cn 9991  ax-icn 9992  ax-addcl 9993  ax-addrcl 9994  ax-mulcl 9995  ax-mulrcl 9996  ax-mulcom 9997  ax-addass 9998  ax-mulass 9999  ax-distr 10000  ax-i2m1 10001  ax-1ne0 10002  ax-1rid 10003  ax-rnegex 10004  ax-rrecex 10005  ax-cnre 10006  ax-pre-lttri 10007  ax-pre-lttrn 10008  ax-pre-ltadd 10009  ax-pre-mulgt0 10010
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ne 2794  df-nel 2897  df-ral 2916  df-rex 2917  df-reu 2918  df-rmo 2919  df-rab 2920  df-v 3200  df-sbc 3434  df-csb 3532  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-nul 3914  df-if 4085  df-pw 4158  df-sn 4176  df-pr 4178  df-op 4182  df-uni 4435  df-br 4652  df-opab 4711  df-mpt 4728  df-id 5022  df-po 5033  df-so 5034  df-xp 5118  df-rel 5119  df-cnv 5120  df-co 5121  df-dm 5122  df-rn 5123  df-res 5124  df-ima 5125  df-iota 5849  df-fun 5888  df-fn 5889  df-f 5890  df-f1 5891  df-fo 5892  df-f1o 5893  df-fv 5894  df-riota 6608  df-ov 6650  df-oprab 6651  df-mpt2 6652  df-er 7739  df-en 7953  df-dom 7954  df-sdom 7955  df-pnf 10073  df-mnf 10074  df-xr 10075  df-ltxr 10076  df-le 10077  df-sub 10265  df-neg 10266  df-div 10682  df-rp 11830
This theorem is referenced by:  bitsfzo  15151  bitsmod  15152  icopnfcnv  22735  logdiflbnd  24715  lgamgulmlem3  24751  chpo1ubb  25164  vmadivsumb  25166  rpvmasumlem  25170  dchrisumlem1  25172  dchrvmasumlem2  25181  rplogsum  25210  dirith2  25211  mulog2sumlem2  25218  vmalogdivsum2  25221  2vmadivsumlem  25223  selbergb  25232  selberg2b  25235  selberg4lem1  25243  pntrlog2bndlem2  25261  pntrlog2bndlem4  25263  pntrlog2bndlem5  25264  pntrlog2bndlem6  25266  pntrlog2bnd  25267  pntibndlem2  25274  ttgcontlem1  25759  sqsscirc1  29939  faclimlem1  31615  knoppndvlem14  32500  itg2addnclem2  33442  geomcau  33535  areaquad  37628  stirlinglem11  40070  stirlinglem12  40071  fourierdlem26  40119  fourierdlem30  40123  fourierdlem47  40139  sge0ad2en  40417
  Copyright terms: Public domain W3C validator