Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  divlimc Structured version   Visualization version   GIF version

Theorem divlimc 41935
Description: Limit of the quotient of two functions. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
divlimc.f 𝐹 = (𝑥𝐴𝐵)
divlimc.g 𝐺 = (𝑥𝐴𝐶)
divlimc.h 𝐻 = (𝑥𝐴 ↦ (𝐵 / 𝐶))
divlimc.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
divlimc.c ((𝜑𝑥𝐴) → 𝐶 ∈ (ℂ ∖ {0}))
divlimc.x (𝜑𝑋 ∈ (𝐹 lim 𝐷))
divlimc.y (𝜑𝑌 ∈ (𝐺 lim 𝐷))
divlimc.yne0 (𝜑𝑌 ≠ 0)
divlimc.cne0 ((𝜑𝑥𝐴) → 𝐶 ≠ 0)
Assertion
Ref Expression
divlimc (𝜑 → (𝑋 / 𝑌) ∈ (𝐻 lim 𝐷))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐷   𝑥,𝑋   𝑥,𝑌   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝐹(𝑥)   𝐺(𝑥)   𝐻(𝑥)

Proof of Theorem divlimc
StepHypRef Expression
1 divlimc.f . . 3 𝐹 = (𝑥𝐴𝐵)
2 eqid 2821 . . 3 (𝑥𝐴 ↦ (1 / 𝐶)) = (𝑥𝐴 ↦ (1 / 𝐶))
3 eqid 2821 . . 3 (𝑥𝐴 ↦ (𝐵 · (1 / 𝐶))) = (𝑥𝐴 ↦ (𝐵 · (1 / 𝐶)))
4 divlimc.b . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
5 divlimc.c . . . . 5 ((𝜑𝑥𝐴) → 𝐶 ∈ (ℂ ∖ {0}))
65eldifad 3947 . . . 4 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
7 divlimc.cne0 . . . 4 ((𝜑𝑥𝐴) → 𝐶 ≠ 0)
86, 7reccld 11408 . . 3 ((𝜑𝑥𝐴) → (1 / 𝐶) ∈ ℂ)
9 divlimc.x . . 3 (𝜑𝑋 ∈ (𝐹 lim 𝐷))
10 divlimc.g . . . 4 𝐺 = (𝑥𝐴𝐶)
11 divlimc.y . . . 4 (𝜑𝑌 ∈ (𝐺 lim 𝐷))
12 divlimc.yne0 . . . 4 (𝜑𝑌 ≠ 0)
1310, 2, 5, 11, 12reclimc 41932 . . 3 (𝜑 → (1 / 𝑌) ∈ ((𝑥𝐴 ↦ (1 / 𝐶)) lim 𝐷))
141, 2, 3, 4, 8, 9, 13mullimc 41895 . 2 (𝜑 → (𝑋 · (1 / 𝑌)) ∈ ((𝑥𝐴 ↦ (𝐵 · (1 / 𝐶))) lim 𝐷))
15 limccl 24472 . . . 4 (𝐹 lim 𝐷) ⊆ ℂ
1615, 9sseldi 3964 . . 3 (𝜑𝑋 ∈ ℂ)
17 limccl 24472 . . . 4 (𝐺 lim 𝐷) ⊆ ℂ
1817, 11sseldi 3964 . . 3 (𝜑𝑌 ∈ ℂ)
1916, 18, 12divrecd 11418 . 2 (𝜑 → (𝑋 / 𝑌) = (𝑋 · (1 / 𝑌)))
20 divlimc.h . . . 4 𝐻 = (𝑥𝐴 ↦ (𝐵 / 𝐶))
214, 6, 7divrecd 11418 . . . . 5 ((𝜑𝑥𝐴) → (𝐵 / 𝐶) = (𝐵 · (1 / 𝐶)))
2221mpteq2dva 5160 . . . 4 (𝜑 → (𝑥𝐴 ↦ (𝐵 / 𝐶)) = (𝑥𝐴 ↦ (𝐵 · (1 / 𝐶))))
2320, 22syl5eq 2868 . . 3 (𝜑𝐻 = (𝑥𝐴 ↦ (𝐵 · (1 / 𝐶))))
2423oveq1d 7170 . 2 (𝜑 → (𝐻 lim 𝐷) = ((𝑥𝐴 ↦ (𝐵 · (1 / 𝐶))) lim 𝐷))
2514, 19, 243eltr4d 2928 1 (𝜑 → (𝑋 / 𝑌) ∈ (𝐻 lim 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  wne 3016  cdif 3932  {csn 4566  cmpt 5145  (class class class)co 7155  cc 10534  0cc0 10536  1c1 10537   · cmul 10541   / cdiv 11296   lim climc 24459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-oadd 8105  df-er 8288  df-map 8407  df-pm 8408  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-fi 8874  df-sup 8905  df-inf 8906  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-2 11699  df-3 11700  df-4 11701  df-5 11702  df-6 11703  df-7 11704  df-8 11705  df-9 11706  df-n0 11897  df-z 11981  df-dec 12098  df-uz 12243  df-q 12348  df-rp 12389  df-xneg 12506  df-xadd 12507  df-xmul 12508  df-fz 12892  df-seq 13369  df-exp 13429  df-cj 14457  df-re 14458  df-im 14459  df-sqrt 14593  df-abs 14594  df-struct 16484  df-ndx 16485  df-slot 16486  df-base 16488  df-plusg 16577  df-mulr 16578  df-starv 16579  df-tset 16583  df-ple 16584  df-ds 16586  df-unif 16587  df-rest 16695  df-topn 16696  df-topgen 16716  df-psmet 20536  df-xmet 20537  df-met 20538  df-bl 20539  df-mopn 20540  df-cnfld 20545  df-top 21501  df-topon 21518  df-topsp 21540  df-bases 21553  df-cnp 21835  df-xms 22929  df-ms 22930  df-limc 24463
This theorem is referenced by:  fourierdlem74  42464  fourierdlem75  42465  fourierdlem76  42466
  Copyright terms: Public domain W3C validator