Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  divlimc Structured version   Visualization version   GIF version

Theorem divlimc 39694
Description: Limit of the quotient of two functions. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
divlimc.f 𝐹 = (𝑥𝐴𝐵)
divlimc.g 𝐺 = (𝑥𝐴𝐶)
divlimc.h 𝐻 = (𝑥𝐴 ↦ (𝐵 / 𝐶))
divlimc.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
divlimc.c ((𝜑𝑥𝐴) → 𝐶 ∈ (ℂ ∖ {0}))
divlimc.x (𝜑𝑋 ∈ (𝐹 lim 𝐷))
divlimc.y (𝜑𝑌 ∈ (𝐺 lim 𝐷))
divlimc.yne0 (𝜑𝑌 ≠ 0)
divlimc.cne0 ((𝜑𝑥𝐴) → 𝐶 ≠ 0)
Assertion
Ref Expression
divlimc (𝜑 → (𝑋 / 𝑌) ∈ (𝐻 lim 𝐷))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐷   𝑥,𝑋   𝑥,𝑌   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝐹(𝑥)   𝐺(𝑥)   𝐻(𝑥)

Proof of Theorem divlimc
StepHypRef Expression
1 divlimc.f . . 3 𝐹 = (𝑥𝐴𝐵)
2 eqid 2621 . . 3 (𝑥𝐴 ↦ (1 / 𝐶)) = (𝑥𝐴 ↦ (1 / 𝐶))
3 eqid 2621 . . 3 (𝑥𝐴 ↦ (𝐵 · (1 / 𝐶))) = (𝑥𝐴 ↦ (𝐵 · (1 / 𝐶)))
4 divlimc.b . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
5 divlimc.c . . . . 5 ((𝜑𝑥𝐴) → 𝐶 ∈ (ℂ ∖ {0}))
65eldifad 3584 . . . 4 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
7 divlimc.cne0 . . . 4 ((𝜑𝑥𝐴) → 𝐶 ≠ 0)
86, 7reccld 10791 . . 3 ((𝜑𝑥𝐴) → (1 / 𝐶) ∈ ℂ)
9 divlimc.x . . 3 (𝜑𝑋 ∈ (𝐹 lim 𝐷))
10 divlimc.g . . . 4 𝐺 = (𝑥𝐴𝐶)
11 divlimc.y . . . 4 (𝜑𝑌 ∈ (𝐺 lim 𝐷))
12 divlimc.yne0 . . . 4 (𝜑𝑌 ≠ 0)
1310, 2, 5, 11, 12reclimc 39691 . . 3 (𝜑 → (1 / 𝑌) ∈ ((𝑥𝐴 ↦ (1 / 𝐶)) lim 𝐷))
141, 2, 3, 4, 8, 9, 13mullimc 39654 . 2 (𝜑 → (𝑋 · (1 / 𝑌)) ∈ ((𝑥𝐴 ↦ (𝐵 · (1 / 𝐶))) lim 𝐷))
15 limccl 23633 . . . 4 (𝐹 lim 𝐷) ⊆ ℂ
1615, 9sseldi 3599 . . 3 (𝜑𝑋 ∈ ℂ)
17 limccl 23633 . . . 4 (𝐺 lim 𝐷) ⊆ ℂ
1817, 11sseldi 3599 . . 3 (𝜑𝑌 ∈ ℂ)
1916, 18, 12divrecd 10801 . 2 (𝜑 → (𝑋 / 𝑌) = (𝑋 · (1 / 𝑌)))
20 divlimc.h . . . 4 𝐻 = (𝑥𝐴 ↦ (𝐵 / 𝐶))
214, 6, 7divrecd 10801 . . . . 5 ((𝜑𝑥𝐴) → (𝐵 / 𝐶) = (𝐵 · (1 / 𝐶)))
2221mpteq2dva 4742 . . . 4 (𝜑 → (𝑥𝐴 ↦ (𝐵 / 𝐶)) = (𝑥𝐴 ↦ (𝐵 · (1 / 𝐶))))
2320, 22syl5eq 2667 . . 3 (𝜑𝐻 = (𝑥𝐴 ↦ (𝐵 · (1 / 𝐶))))
2423oveq1d 6662 . 2 (𝜑 → (𝐻 lim 𝐷) = ((𝑥𝐴 ↦ (𝐵 · (1 / 𝐶))) lim 𝐷))
2514, 19, 243eltr4d 2715 1 (𝜑 → (𝑋 / 𝑌) ∈ (𝐻 lim 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1482  wcel 1989  wne 2793  cdif 3569  {csn 4175  cmpt 4727  (class class class)co 6647  cc 9931  0cc0 9933  1c1 9934   · cmul 9938   / cdiv 10681   lim climc 23620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-8 1991  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-rep 4769  ax-sep 4779  ax-nul 4787  ax-pow 4841  ax-pr 4904  ax-un 6946  ax-cnex 9989  ax-resscn 9990  ax-1cn 9991  ax-icn 9992  ax-addcl 9993  ax-addrcl 9994  ax-mulcl 9995  ax-mulrcl 9996  ax-mulcom 9997  ax-addass 9998  ax-mulass 9999  ax-distr 10000  ax-i2m1 10001  ax-1ne0 10002  ax-1rid 10003  ax-rnegex 10004  ax-rrecex 10005  ax-cnre 10006  ax-pre-lttri 10007  ax-pre-lttrn 10008  ax-pre-ltadd 10009  ax-pre-mulgt0 10010  ax-pre-sup 10011
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1485  df-fal 1488  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ne 2794  df-nel 2897  df-ral 2916  df-rex 2917  df-reu 2918  df-rmo 2919  df-rab 2920  df-v 3200  df-sbc 3434  df-csb 3532  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-pss 3588  df-nul 3914  df-if 4085  df-pw 4158  df-sn 4176  df-pr 4178  df-tp 4180  df-op 4182  df-uni 4435  df-int 4474  df-iun 4520  df-br 4652  df-opab 4711  df-mpt 4728  df-tr 4751  df-id 5022  df-eprel 5027  df-po 5033  df-so 5034  df-fr 5071  df-we 5073  df-xp 5118  df-rel 5119  df-cnv 5120  df-co 5121  df-dm 5122  df-rn 5123  df-res 5124  df-ima 5125  df-pred 5678  df-ord 5724  df-on 5725  df-lim 5726  df-suc 5727  df-iota 5849  df-fun 5888  df-fn 5889  df-f 5890  df-f1 5891  df-fo 5892  df-f1o 5893  df-fv 5894  df-riota 6608  df-ov 6650  df-oprab 6651  df-mpt2 6652  df-om 7063  df-1st 7165  df-2nd 7166  df-wrecs 7404  df-recs 7465  df-rdg 7503  df-1o 7557  df-oadd 7561  df-er 7739  df-map 7856  df-pm 7857  df-en 7953  df-dom 7954  df-sdom 7955  df-fin 7956  df-fi 8314  df-sup 8345  df-inf 8346  df-pnf 10073  df-mnf 10074  df-xr 10075  df-ltxr 10076  df-le 10077  df-sub 10265  df-neg 10266  df-div 10682  df-nn 11018  df-2 11076  df-3 11077  df-4 11078  df-5 11079  df-6 11080  df-7 11081  df-8 11082  df-9 11083  df-n0 11290  df-z 11375  df-dec 11491  df-uz 11685  df-q 11786  df-rp 11830  df-xneg 11943  df-xadd 11944  df-xmul 11945  df-fz 12324  df-seq 12797  df-exp 12856  df-cj 13833  df-re 13834  df-im 13835  df-sqrt 13969  df-abs 13970  df-struct 15853  df-ndx 15854  df-slot 15855  df-base 15857  df-plusg 15948  df-mulr 15949  df-starv 15950  df-tset 15954  df-ple 15955  df-ds 15958  df-unif 15959  df-rest 16077  df-topn 16078  df-topgen 16098  df-psmet 19732  df-xmet 19733  df-met 19734  df-bl 19735  df-mopn 19736  df-cnfld 19741  df-top 20693  df-topon 20710  df-topsp 20731  df-bases 20744  df-cnp 21026  df-xms 22119  df-ms 22120  df-limc 23624
This theorem is referenced by:  fourierdlem74  40166  fourierdlem75  40167  fourierdlem76  40168
  Copyright terms: Public domain W3C validator